west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Anoxia" 6 results
  • Rhodiola's effect on tissue morphology and hypoxia-inducible factor-1α expression of rat retina in the simulated high altitude hypoxia

    ObjectiveTo observe the effects of Rhodiola on the rat retinal tissue morphology and the hypoxia-inducible factor (HIF)-1α at simulated hypoxia at different altitudes. Methods Forty-eight adult female Sprague Dawley rats were randomly divided into the Rhodiola Intervention group (intervention group) and the control group, each group had 24 rats. The intervention group rats were treated with intraperitoneal injection of 10 ml/kg of large plants Rhodiola solution, and the control group rats were injected with same volume of saline. One hour after the injection, six rats were randomly selected from both of the two groups and reared in the plateau environment simulation laboratory modules with the oxygen partial pressure of 17.4, 14.6, 11.3 and 7.4 kPa, which simulated the altitudes of 1500, 3000, 5000 and 8000 meters indoor respectively. Six hours later the rat eyeballs were harvested for paraffin sections and analyzed by hematoxylin and eosin staining, and immunohistochemical staining to observe the expression of HIF-1α and p53. ResultsIn the control group, the rat retinal layers were edema and loose, the retinal thickness increased, the retinal structure was disorganized, the ganglion cells were swollen and degenerated, and some can observe the karyopyknosis, karyolysis and the reduced cells number. As the altitude increased, the pathological changes of retinal became more obvious. In the intervention group, the characteristics of rat retinal morphology were same with the control group, while the degree of morphology changes was lighter than the control group. HIF-1α and p53 expressed mainly in the ganglion cell layer and inner nuclear layer of rat retina in the control group. As altitude increased, the expression of HIF-1α and p53 were increased too, which was positive correlated (r=0.9846, P < 0.05). Compared with the control group, the rat retinal expression of HIF-1α increased, while expression of p53 decreased in the intervention group, and the differences were statistically significant (P < 0.05). ConclusionRhodiola can reduce the retinal tissue pathology damage caused by high altitude hypoxia, and its mechanism may be related to the increasing expression of HIF-1α and reducing expression of p53.

    Release date: Export PDF Favorites Scan
  • Astragalus injection' effect on the expression of hypoxia-inducible factor-1α and p53 in the retina of rats under hypoxia environment

    ObjectiveTo observe the expression and mechanism of hypoxia-inducible factor-1α (HIF-1α) and p53 protein at the altitude of 5000 meter plateau hypoxia environment in rats, as well as the effect of Astragalus injection. MethodsSixty Sprague Dawley rats were randomly divided into the Astragalus injection intervention group and normal saline control group, 30 rats in each group. Astragalus injection group rats were intraperitoneal injected of Astragalus injection (15 ml/kg) before 30 minutes into the plateau environment simulation cabin, normal saline group rats were intraperitoneal injected with the same volume of saline. 30 minutes after injection, rats in each group were reared in the plateau experiment cabin which simulated altitude of 5000 m (oxygen partial pressure 11.3 kPa) for 2, 6, 8, 12, 24 hours, each time period of 6 rats. When get out, the rats were executed immediately and eyes were harvested. Retinal sections were studied by hematoxylin eosin stain, and immunohistochemical method for HIF-1α and p53 expression. ResultsFor control rats, after 2 hours in the cabin, there was edema in retinal layers. HIF-1α and p53 were expressed mainly in the cytoplasm of retinal layers. When the periods in cabin extended, there was atrophy of retinal nerve fiber layer, swelling and degeneration of ganglion cells. The expression of HIF-1α and p53 was increased. Compared with the control group, the intervention group rat had similar but less severe retinal changes, and the expression of HIF-1α and p53 was significantly decreased (P<0.05). ConclusionAstragalus injection can reduce pathological retinal damage in rats at high altitude environment, and its mechanism may be associated with reduced HIF-1α, p53 expression.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • The relationship between the expression of sonic hedgehog and vascular endothelial growth factor in hypoxic human retinal pigment epithelial cells

    Objective To study the relationship between the expression of sonic hedgehog (Shh) and vascular endothelial growth factor (VEGF) in hypoxic human retinal pigment epithelial (hRPE) cells. Methods Cultured hRPE-19 cells (3rd - 6th generations) were used in this experiment. hRPE-19 cells were divided into three groups including the control group, the hypoxia experimental group (100 μmol/L CoCl2) and the inhibition group (pretreatment with 20 μmol/L cyclopamine 1 hour before hypoxia). After culturing for 4, 8, 12 and 24 hours, the mRNA level of Shh and VEGF genes in these cells were measured by fluorescence quantitative polymerase chain reaction, and the protein level of Shh and VEGF in the supernatants were measure by enzyme-linked immunosorbent assay. The relationship between the expression of Shh and VEGF was analyzed by Pearson correlation analysis. Results The control group expressed low levels of Shh and VEGF mRNA/protein. The expression of Shh and VEGF mRNA/protein in the hypoxia experimental group was significantly higher than that in the control group (F=178.364, 183.732, 77.456, 91.572; P<0.01). The expression of Shh and VEGF mRNA in the inhibition group was significantly lower than that in the hypoxia experimental group (F=68.745, 121.834; P<0.01). In the hypoxia experimental group, the expression of VEGF protein was positively correlated with the expression of Shh protein (r=0.942, P<0.05); and the expression of VEGF and Shh mRNA was positively correlated (r=0.970, P<0.01). However, there was no significant correlation in the expression of VEGF and Shh mRNA in the inhibition group (r=0.915, P>0.05). Conclusion There is a positive correlation between the expression of Shh and VEGF in hypoxic hRPE cells.

    Release date:2018-03-16 02:36 Export PDF Favorites Scan
  • Effects of pyrimidine bundle-binding protein-associated splicing factors on the function of hypoxia-induced human retinal microvascular endothelial cells

    ObjectiveTo observe the effect of pyrimidine bundle-binding protein-associated splicing factors (PSF) on the function of hypoxia-induced human retinal microvascular endothelial cells (hRMECs).MethodsA three-plasmid system was used to construct lentivirus (LV)-PSF. After LV-PSF infected hRMECs in vitro, the infection efficiency was measured by flow cytometry. Real-time quantitative PCR (RT-PCR) was used to detect the expression of PSF mRNA in hRMECs infected with LV-PSF. The experiment was divided into two parts, in vivo and in vitro. In vivo experiments: 20 healthy C57B/L6 mice at the age of postnatal 7 were randomly divided into normal group, oxygen-induced retinopathy (OIR) group, OIR+LV-Vec group, and OIR+LV-PSF group, each group has five mice. Mice in 3 groups were constructed with OIR models except the normal group and the mice in OIR group were not treated. The mice in the OIR + LV-Vec group and the OIR+LV-PSF group were injected with an empty vector (LV-Vec) or LV-PSF in the vitreous cavity, respectively. The effect of LV-PSF on the formation of retinal neovascularization (RNV) was observed then. In vitro experiments: hRMECs were divided into normal group, hypoxia group, vector group, and PSF high expression group. HRMECs in the normal group were cultured in vitro; hRMECs in the hypoxic group were restored to normal culture conditions for 3 h after 3 h of hypoxia stimulation; hRMECs in the vector group and PSF high expression group were infected with LV-Vec and LV-PSF for 48 h, and hRMECs were returned to normal culture conditions for 24 h with hypoxia stimulation for 3 h. The effect of PSF on cell proliferation was observed by MTT colorimetry. Cell scratch test and Transwell migration experiment were used to observe the effect of PSF on cell migration ability under hypoxia stimulation. RT-PCR was used to observe the mRNA expression of HIF-1α, VEGF and PSF in each group of cells.ResultsThe LV-PSF of stably expressing PSF was successfully constructed. The infection efficiency was 97% determined by flow cytometry. The level of PSF mRNA in hRMECs infected with LV-PSF was significantly increased and detected by RT-PCR. In vivo experiments: The RNV area of the mice in the OIR group and the OIR + LV-Vec group was significantly increased compared to the normal group (t=18.31, 43.71), and the RNV area of the mice in the OIR + LV-PSF group was smaller than that in the OIR group (t=11.30) and OIR + The LV-Vec group (t=15.47), and the differences were statistically significant (P<0.05). In vitro experiments: MTT colorimetry results showed that the proliferative capacity of hRMECs in the hypoxic group was significantly enhanced compared with the normal group (t=2.57), and the proliferative capacity of hRMECs in the PSF high expression group was significantly lower than that of the normal, hypoxic, and vector groups (t=5.26, 5.46, 3.73), the differences were statistically significant (P<0.05). The results of cell scratch test showed that the hRMECs could be stimulated by the hypoxia stimulation for 3 hours to restore the normal condition for 24 hours or 48 hours (t=8.35, 13.84; P<0.05). Compared with the vector group, cell migration rate in the PSF-high expression group was not significant (t=10.99, 18.27, 9.75, 8.93, 26.94, 7.01; P<0.05). Transwell experiments showed that the number of cells stained on the microporous membrane was higher in the normal group and the vector groups, while the number of cells stained in the PSF high expression group was significantly reduced (t=9.33, 6.15; P<0.05). The results of RT-PCR showed that the mRNA expression of HIF-1α and VEGF in hRMECs in the hypoxic and vector groups increased significantly compared with the normal group (t=15.23, 21.09; P<0.05), but no change in the mRNA expression of PSF (t=0.12, 2.15; P>0.05); compared with the hypoxia group and the vector group, the HIF-1α and VEGF mRNA expression in hRMECs in the PSF high expression group were significantly decreased (t=10.18, 13.10; P<0.05), but the PSF mRNA expression increased (t=65.00, 85.79; P<0.05).ConclusionPSF can reduce the RNV area in OIR model mice. PSF may inhibit hypoxia-induced proliferation and migration of hRMECs through the HIF-1α/VEGF signaling pathway.

    Release date:2020-03-18 02:34 Export PDF Favorites Scan
  • MiSeq analysis of gene expression profiles in human retinal capillary endothelial cells induced by fulvic acid

    ObjectiveTo observe the MiSeq sequencing analysis results of fulvic acid (FA) intervention in hypoxia-induced human retinal microvascular endothelial cell (hRMEC) gene expression profile.MethodshRMEC were cultured in vitro and divided into the hypoxia group (hypoxia treatment) and the FA intervention group (FA intervention after hypoxia). The MTT colorimetric method was used to detect the influence of different concentrations and different modes of FA on hRMEC activity. The optimal concentration of FA was chosen. RT-PCR was used to investigated the effect of FA on hypoxia-induced intercellular adhesion molecule-1 (ICAM-1), IL-1β, IL-4, IL-6, IL-6, IL-8, IL-10, MMP-2, TNF-α, TNF-β, other inflammatory factors in hRMEC, and inflammation-related factors mRNA expression. Cells in the hypoxia group and FA intervention group in the logarithmic growth phase were collected. MiSeq sequencing technology was applyed to complete the whole transcriptome sequencing of the two groups of cells, biological data were obtained, and the differentially expressed miRNA were analyzed on this basis. Gene annotation (GO) functionally significant enrichment analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway significant enrichment analysis were used to analyze the functions and signal pathways of differential miRNAs. The expression of inflammatory factors and inflammation-related factors were compared between groups. The expression level of the corresponding miRNA in the cell was regulated by miRNA mimic, and its effect on cell function was observed, so as to judge the effect of the miRNA.ResultsDifferent concentrations and different modes of action of FA had no effect on the cell viability of hRMEC. The mRNA expression of ICAM-1, IL-1β, IL-6 and TNF-β in the hypoxia group hRMEC were significantly up-regulated compared with the normal group, and the difference was statistically significant (t=3.426, 6.011, 5.282, 6.500; P=0.027, 0.004, 0.006, 0.003); the mRNA expression of ICAM-1, IL-6, TNF-α and TNF-β in the FA intervention group hRMEC was significantly lower than that of the hypoxia group, and the difference was statistically significant (t=9.961, 3.676, 3.613, 3.387; P=0.001, 0.021, 0.023, 0.028). There were 14 differentially expressed miRNAs between the hypoxia group and the FA intervention group, of which 9 were up-regulated genes and 5 were down-regulated genes. The predicted target genes of 4 differential miRNAs (hsa-miR-1285-3p, hsa-miR-30d-3p, hsa-miR-3170, hsa-miR-7976) were all ICAM-1. The results of significant enrichment analysis of GO function showed that the functions of differential genes were mainly enriched in the process of cell development, cell differentiation and single organism development. Significant enrichment analysis of the KEGG pathway showed that the differential miRNA expression was highly enriched in the proteoglycan pathway and the cytokine-cytokine receptor interaction pathway in cancer, and the arachidonic acid metabolism pathway and the amphetamine pathway were the more obvious differential expressions.ConclusionFA may affect the expression level of downstream ICAM-1 mRNA by regulating the expression of multiple miRNAs, thereby affecting the inflammatory state of cells after hypoxia-stimulated hRMEC.

    Release date:2020-11-19 09:16 Export PDF Favorites Scan
  • Bioinformatics analysis of transcriptome sequencing of early hypoxia damage in photoreceptor 661W cell line

    ObjectiveTo analyze the early changes of gene expression levels and signaling pathways in 661W cell line under hypoxic conditions and to find potential functional target genes.MethodsThe cultured mouse 661W cells were divided into hypoxia treatment group and normoxia control group. Cells in the hypoxia treatment group were cultured in a three-gas incubator with volume fraction of 1% and 5% CO2 at 37 ℃. Cells in the normoxia control group were cultured in an incubator at 37 ℃ with volume fraction of 5% CO2. High-throughput sequencing technology was used to sequence the transcriptome of 661W cell treated with hypoxia and normoxia for 4 hours to screen for differentially expressed genes (DEG). Clustering heat map analysis, gene ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction network (PPI) analysis were performed. The reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the accuracy of the sequencing results.ResultsA total of 506 differentially expressed genes were screened, including 459 up-regulated genes and 47 down-regulated genes. GO functional enrichment analysis showed that the main biological processes of DEG were the cell's response to hypoxia, glycolysis, negative regulation of cell proliferation and apoptosis. hypoxia inducible factor (HIF)-1α pathway, glycolysis, Forkhead box O (FoxO) pathway, Insulin signaling pathway and Adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway were involved in the above process. PPI analysis results showed that hub genes related to hypoxia were Aldoa, Aldoc, Gpi1, Hk2, Hk1, Pfkl, Pfkp, Vhl, Fbxo10 and Fbxo27. The RT-PCR results showed that the relative expression levels of 15 DEG mRNA in the hypoxic treatment group were higher than that of the normoxic control group, and the difference was statistically significant (P<0.05). The mRNA expression levels of N-myc downstream-regulated gene-1 (Ndrg1), Mt1, and vascular endothelial growth factor A (VEGFA) were time-dependent on hypoxia.ConclusionsUnder hypoxia, DEG is mainly related to glucose metabolism, cell response to hypoxia, regulation of proliferation and apoptosis. HIF-1α pathway, glycolysis, FoxO pathway and AMPK pathway are involved in the early changes of 661W cells under hypoxia. Aldoa, Aldoc, Gpi1, Hk2, Hk1, Pfkl, Pfkp, Vhl, Fbxo10, Fbxo27 may play key roles in the response of 661W cells to hypoxia. Ndrg1, Mt1 and VEGFA could be potential functional target genes for the study of ischemia and hypoxia-related fundus diseases.

    Release date:2021-04-19 03:36 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content