1. |
Shao Y, Dong LJ, Takahashi Y, et al. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy[J]. Am J Physiol Endocrinol Metab, 2019, 316(3): 443-452. DOI: 10.1152/ajpendo.00360.2018.
|
2. |
Dong L, Nian H, Shao Y, et al. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy[J]. Cell Tissue Res, 2015, 360(2): 233-243. DOI: 10.1007/s00441-014-2104-5.
|
3. |
Tian F, Zhao J, Bu S, et al. KLF6 induces apoptosis in human lens epithelial cells through the ATF4-ATF3-CHOP axis[J]. Drug Des Devel Ther, 2020, 14: 1041-1055. DOI: 10.2147/DDDT.S218467.
|
4. |
Dong L, Zhang X, Fu X, et al. PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated Ig epsilon gene transcription by recruitment of HDAC1[J]. J Biol Chem, 2011, 286(5): 3451-3459. DOI: 10.1074/jbc.M110.168377.
|
5. |
Xing X, Huang L, Lv Y, et al. DL-3-n-butylphthalide protected retinal müller cells dysfunction from oxidative stress[J]. Curr Eye Res, 2019, 44(10): 1112-1120. DOI: 10.1080/02713683.2019.1624777.
|
6. |
黄亮瑜, 柯屹峰, 林婷婷, 等. 慢病毒介导聚嘧啶束结合蛋白相关剪接因子对氧诱导视网膜病变小鼠视网膜新生血管的抑制作用[J]. 中华眼底病杂志, 2020, 36(1): 53-56. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.012.Huang LY, Ke YF, Lin TT, et al. Effects of polypyrimidine bundle binding protein-related splicing factors on apoptosis of retinal pigment epithelial cells induced by hydrogen peroxide[J]. Chin J Ocul Fundus Dis, 2020, 36(1): 53-56. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.012.
|
7. |
田芳, 东莉洁, 周玉, 等. 重组腺相关病毒-多聚嘧啶序列结合蛋白相关剪接因子对氧诱导视网膜新生血管形成的抑制作用[J]. 中华眼底病杂志, 2014, 30(5): 504-508. DOI: 10.3760/cma.j.issn.1005-1015.2014.05.019.Tian F, Dong LJ, Zhou Y, et al. Inhibitory effect of recombinant adeno-associated virus-polypyrimidine sequence binding protein-related splicing factor on oxygen-induced retinal neovascularization[J]. Chin J Ocul Fundus Dis, 2014, 30(5): 504-508. DOI: 10.3760/cma.j.issn.1005-1015.2014.05.019.
|
8. |
田芳, 东莉洁, 吉洁, 等. 多聚嘧啶序列结合蛋白相关剪接因子对视网膜血管内皮细胞IGF-1/VEGF信号通路的抑制作用[J]. 中华实验眼科杂志, 2016, 34(1): 11-16. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.003.Tian F, Dong LJ, Ji J, et al. Inhibitory effect of polypyrimidine sequence binding protein-related splicing factor on IGF-1/VEGF signal pathway in retinal vascular endothelial cells[J]. Chin J Exp Ophthalmol, 2016, 34(1): 11-16. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.003.
|
9. |
田芳, 胡博杰, 李文博, 等. 高表达多聚嘧啶序列结合蛋白相关剪接因子对糖基化终产物诱导下视网膜Müller细胞凋亡的影响[J]. 中华眼底病杂志, 2019, 35(1): 70-75. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.015.Tian F, Hu BJ, Li WB, et al. Effect of high expression of polypyrimidine sequence binding protein-related splicing factors on apoptosis of retinal Müller cells induced by advanced glycation end products[J]. Chin J Ocul Fundus Dis, 2019, 35(1): 70-75. DOI: 10.3760/cma.j.issn.1005-1015.2019.01.015.
|
10. |
Li RL, Zhao WW, Gao BY. Advanced glycation end products induce neural tube defects through elevating oxidative stress in mice[J]. Neural Regen Res, 2018, 13(8): 1368-1374. DOI: 10.4103/1673-5374.235249.
|
11. |
Youn JY, Siu KL, Lob HE, et al. Role of vascular oxidative stress in obesity and metabolic syndrome[J]. Diabetes, 2014, 63(7): 2344-2355. DOI: 10.2337/db13-0719.
|
12. |
Joseph D, Kimar C, Symington B, et al. The detrimental effects of acute hyperglycemia on myocardial glucose uptake[J]. Life Sci, 2014, 105(1-2): 31-42. DOI: 10.1016/j.lfs.2014.04.009.
|
13. |
Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9): 1058-1070. DOI: 10.1161/CIRCRESAHA.110.223545.
|
14. |
Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biol, 2014, 2: 411-429. DOI: 10.1016/j.redox.2013.12.016.
|
15. |
漆晨, 郭如如, 东莉洁, 等. PSF蛋白及其在眼科的应用研究[J]. 国际眼科纵览, 2015, 39(3): 195-199. DOI: 10.3706/cma.j.issn.1673-5803.Qi C, Guo RR, Dong LJ, et al. Study on PSF protein and its application in ophthalmology[J]. Int Rev Ophthalmol, 2015, 39(3): 195-199. DOI: 10.3706/cma.j.issn.1673-5803.
|
16. |
漆晨, 东莉洁, 乐毅, 等. 多聚嘧啶序列结合蛋白相关剪接因子对体外培养的视网膜色素上皮细胞磷脂酰肌醇3激酶/丝氨酸-苏氨酸蛋白激酶信号通路的调控作用[J]. 中华眼底病杂志, 2015, 31(4): 363-367. DOI: 10.3760/cma.j.issn.1005-1015.2015.04.013.Qi C, Dong LJ, Yue Y, et al. Regulation of polypyrimidine sequence binding protein-related splicing factor on phosphatidylinositol 3 kinase/serine-threonine protein kinase signal pathway in cultured retinal pigment epithelial cells[J]. Chin J Ocul Fundus Dis, 2015, 31(4): 363-367. DOI: 10.3760/cma.j.issn.1005-1015.2015.04.013.
|
17. |
徐嫚鸿, 王林妮, 林婷婷, 等. 多聚嘧啶序列结合蛋白相关剪接因子对缺氧诱导人视网膜微血管内皮细胞功能的影响[J]. 中华眼底病杂志, 2020, 36(2): 135-142. DOI: 10.3760/cma.j.issn.1005-1015.2020.02.010.Xu MH, Wang LN, Lin TT, et al. Effects of pyrimidine bundle-binding protein-associated splicing factors on the function of hypoxia- induced human retinal microvascular endothelial cells[J]. Chin J Ocul Fundus Dis, 2020, 36(2): 135-142. DOI: 10.3760/cma.j.issn.1005-1015.2020.02.010.
|
18. |
田芳, 李文博, 黄亮瑜, 等. 聚嘧啶束结合蛋白相关剪接因子对过氧化氢诱导下视网膜色素上皮细胞凋亡的影响[J]. 中华眼底病杂志, 2018, 34(2): 159-163. DOI: 10.3760/cma.j.issn.1005-1015.2018.02.012.Tian F, Li WB, Huang LY, et al. The effect of polypyrimidine tract binding protein-associated splicing factor on hydrogen peroxide induced apoptosis of retinal pigment epithelial[J]. Chin J Ocul Fundus Dis, 2018, 34(2): 159-163. DOI: 10.3760/cma.j.issn.1005-1015.2018.02.012.
|
19. |
漆晨, 张慧, 林婷婷, 等. 聚嘧啶束结合蛋白相关剪接因子高表达对糖基化终末产物诱导下视网膜色素上皮细胞损伤的保护作用[J]. 中华眼底病杂志, 2020, 36(1): 46-52. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.Qi C, Zhang H, Lin TT, et al. Protective effect of polypyrimidine bundle-binding protein-related splicing factor on retinal pigment epithelial cell injury induced by advanced glycation end products[J]. Chin J Ocul Fundus Dis, 2020, 36(1): 46-52. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.
|
20. |
Xu J, Chen LJ, Yu J, et al. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy[J]. Cell Physiol Biochem, 2018, 48(2): 705-717. DOI: 10.1159/000491897.
|
21. |
Wang P, Xing Y, Chen C, et al. Advanced glycation end-product (AGE) induces apoptosis in human retinal ARPE-19 cells via promoting mitochondrial dysfunction and activating the Fas-FasL signaling[J]. Biosci Biotechnol Biochem, 2016, 80(2): 250-256. DOI: 10.1080/09168451.
|
22. |
Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis[J]. Horm Metab Res, 2015, 47(9): 686-692. DOI: 10.1055/s-0034-1395609.
|
23. |
Sanajou D, Ghorbani Haghjo A, Argani H, et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions[J]. Eur J Pharmacol, 2018, 833: 158-164. DOI: 10.1016/j.ejphar.2018.06.001.
|
24. |
Chao PC, Huang CN, Hsu CC, et al. Association of dietary AGEs with circulating AGEs, glycated LDL, IL-1α and MCP-1 levels in type 2 diabetic patients[J]. Eur J Nutr, 2010, 49(7): 429-434. DOI: 10.1007/s00394-010-0101-3.
|
25. |
Wang Y, Xiong X, Guo H, et al. ZnPP reduces autophagy and induces apoptosis, thus aggravating liver ischemia/reperfusion injury in vitro[J]. Int J Mol Med, 2014, 34(6): 1555-1564. DOI: 10.3892/ijmm.2014.1968.
|
26. |
de Oliveira MR, Brasil FB, Fürstenau CR. Sulforaphane attenuated the pro-inflammatory state induced by hydrogen peroxide in SH-SY5Y cells through the Nrf2/HO-1 signaling pathway[J]. Neurotox Res, 2018, 34(2): 241-249. DOI: 10.1007/s12640-018-9881-7.
|
27. |
Morse D, Choi AMK. Heme oxygenase-1: the “emerging molecule” has arrived[J]. Am J Respir Cell Mol Biol, 2002, 27(1): 8-16. DOI: 10.1165/ajrcmb.27.1.4862.
|
28. |
Ghattas MH, Chuang LT, Kappas A, et al. Protective effect of HO-1 against oxidative stress in human hepatoma cell line (HepG2) is independent of telomerase enzyme activity[J]. Int J Biochem Cell Biol, 2002, 34(12): 1619-1628. DOI: 10.1016/s1357-2725(02)00097-3.
|
29. |
Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. J Recept Signal Transduct Res, 2015, 35(6): 600-604. DOI: 10.3109/10799893.2015.1030412.
|
30. |
Sunahori K, Nagpal K, Hedrich CM, et al. The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients[J]. J Biol Chem, 2013, 288(30): 21936-21944. DOI: 10.1074/jbc.M113.467266.
|
31. |
Lee S, Yang H, Son G, et al. Eriodictyol protects endothelial cells against oxidative stress-induced cell death through modulating ERK/Nrf2/ARE-dependent heme oxygenase-1 expression[J]. Int J Mol Sci, 2015, 16(12): 14526-14539. DOI: 10.3390/ijms160714526.
|
32. |
Zhang D, Xiao Y, Lv P, et al. Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway[J]. Neurol Res, 2018, 40(1): 1-10. DOI: 10.1080/01616412.2017.1376457.
|
33. |
Povlsen GK, Edvinsson L. MEK1/2 inhibitor U0126 but not endothelin receptor antagonist clazosentan reduces upregulation of cerebrovascular contractile receptors and delayed cerebral ischemia, and improves outcome after subarachnoid hemorrhage in rats[J]. J Cereb Blood Flow Metab, 2014, 35(2): 329-337. DOI: 10.1038/jcbfm.2014.205.
|
34. |
Malemud CJ, Lewis AC, Wylie MA, et al. U0126, an inhibitor of MEK1/2, increases tumor necrosis factor-α-induced apoptosis, but not interleukin-6 induced apoptosis in C-28/I2 human chondrocytes[J]. Autoimmune Disord, 2015, 1(1): 4. DOI: 10.21767/2471-8153.100004.
|
35. |
Zhu C, Dong Y, Liu H, et al. Hesperetin protects against H2O2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells[J]. Biomed Pharmacother, 2017, 88: 124-133. DOI: 10.1016/j.biopha.2016.11.089.
|
36. |
Nitti M, Piras S, Brondolo L, et al. Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration?[J]. Int J Mol Sci, 2018, 19(8): 2260. DOI: 10.3390/ijms19082260.
|
37. |
Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain[J]. Genes Dev, 1999, 13(1): 76-86. DOI: 10.1101/gad.13.1.76.
|
38. |
Jiang CS, Zhuang CL, Zhu K, et al. Identification of a novel small-molecule Keap1-Nrf2 PPI inhibitor with cytoprotective effects on LPS-induced cardiomyopathy[J]. J Enzyme Inhib Med Chem, 2018, 33(1): 833-841. DOI: 10.1080/14756366.2018.1461856.
|
39. |
Li C, Cheng L, Wu H, et al. Activation of the KEAP1-NRF2-ARE signaling pathway reduces oxidative stress in Hep2 cells[J]. Mol Med Rep, 2018, 18(3): 2541-2550. DOI: 10.3892/mmr.2018.9288.
|