1. |
刘爱华, 王礼明, 吕瀛娟, 等. 原发性开角型青光眼房水差异表达蛋白分析[J]. 中华实验眼科杂志, 2019, 37(10): 799-806. DOI: 10.3760/cma.j.issn.2095-0160.2019.10.007.Liu AH, Wang LM, Lyu YJ, et al. Analysis of different proteins in primary open angle glaucoma based on aqueous proteome[J]. Chin J Exp Ophthalmol, 2019, 37(10): 799-806. DOI: 10.3760/cma.j.issn.2095-0160.2019.10.007.
|
2. |
王礼明, 东莉洁, 刘勋, 等. 急性原发性闭角型青光眼急性发作期房水蛋白质组学分析[J]. 中华眼科杂志, 2019, 55(9): 687-694. DOI: 10.3760/cma.j.issn.0412-4081.2019.09.011.Wang LM, Dong LJ, Liu X, et al. Proteomic analysis of aqueous humor in acute primary angle-closure glaucoma[J]. Chin J Ophthalmol, 2019, 55(9): 687-694. DOI: 10.3760/cma.j.issn.0412-4081.2019.09.011.
|
3. |
温德佳, 任新军, 东莉洁, 等. 应用iTRAQ蛋白组技术筛选增生性糖尿病视网膜病变防治靶点的研究[J]. 中华眼科杂志, 2019, 55(10): 769-776. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.008.Wen DJ, Ren XJ, Dong LJ, et al. New exploration of treatment target for proliferative diabetic retinopathy based on iTRAQ LC-MS/MS Proteomics[J]. Chin J Ophthalmol, 2019, 55(10): 769-776. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.008.
|
4. |
Li J, Lu Q, Lu P. Quantitative proteomics analysis of vitreous body from type 2 diabetic patients with proliferative diabetic retinopathy[J]. BMC Ophthalmol, 2018, 18(1): 151. DOI: 10.1186/s12886-018-0821-3.
|
5. |
Zhang L, Du J, Justus S, et al. Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration[J]. J Clin Invest, 2016, 126(12): 4659-4673. DOI: 10.1172/jci86905.
|
6. |
薄其玉, 东莉洁, 张琰, 等. 氧诱导视网膜病变小鼠模型微小RNA表达谱分析[J]. 中华眼底病杂志, 2015, 31(1): 77-82. DOI: 10.3760/cma.j.issn.1005-1015.2015.01.019.Bo QY, Dong LJ, Zhang Y, et al. MicroRNA expression profiling in a mouse model of oxygen-induced retinopathy[J]. Chin J Ocul Fundus Dis, 2015, 31(1): 77-82. DOI: 10.3760/cma.j.issn.1005-1015.2015.01.019.
|
7. |
牛瑞, 东莉洁, 马腾, 等. 抗血管内皮生长因子药物治疗后视网膜血管内皮细胞基因表达谱的RNA-Seq分析[J]. 中华眼底病杂志, 2018, 34(3): 275-280. DOI: 10.3760/cma.j.issn.1005-1015.2018.03.016.Niu R, Dong LJ, Ma T, et al. RNA-Seq analysis of gene expression profiling in human retinal vascular endothelial cells after anti-vascular endothecial growth factor treatment[J]. Chin J Ocul Fundus Dis, 2018, 34(3): 275-280. DOI: 10.3760/cma.j.issn.1005-1015.2018.03.016.
|
8. |
Ewens KG, Bhatti TR, Moran KA, et al. Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma[J]. Cancer Med, 2017, 6(3): 619-630. DOI: 10.1002/cam4.1010.
|
9. |
张哲, 刘巨平, 东莉洁, 等. 高糖状态下视网膜血管内皮细胞基因表达谱的RNA-Seq分析[J]. 中华眼底病杂志, 2018, 34(4): 377-381. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.014.Zhang Z, Liu JP, Dong LJ, et al. RNA-Seq analysis of gene expression profiling in retinal vascular endothelial cells under high glucose condition[J]. Chin J Ocul Fundus Dis, 2018, 34(4): 377-381. DOI: 10.3760/cma.j.issn.1005-1015.2018.04.014.
|
10. |
张丽娟, 张琰, 东莉洁, 等. MicroRNA在眼部的表达及其功能[J]. 中华眼科杂志, 2012, 48(12): 1136-1140. DOI: 10.3760/cma.j.issn.0412-4081.2012.12.023.Zhang LJ, Zhang J, Dong LJ, et al. MicroRNA expression and its function in eyes[J]. Chin J Ophthalmol, 2012, 48(12): 1136-1140. DOI: 10.3760/cma.j.issn.0412-4081.2012.12.023.
|
11. |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63. DOI: 10.1038/nrg2484.
|
12. |
Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach[J]. Nat Rev Genet, 2010, 11(7): 476-486. DOI: 10.1038/nrg2795.
|
13. |
Liang Q, Dharmat R, Owen L, et al. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling[J]. Nat Commun, 2019, 10(1): 5743. DOI: 10.1038/s41467-019-12917-9.
|
14. |
Benavente CA, Dyer MA. Genetics and epigenetics of human retinoblastoma[J]. Annu Rev Pathol, 2015, 10: 547-562. DOI: 10.1146/annurev-pathol-012414-040259.
|
15. |
Felsher DW. Role of MYCN in retinoblastoma[J]. Lancet Oncol, 2013, 14(4): 270-271. DOI: 10.1016/s1470-2045(13)70070-6.
|
16. |
Wu N, Jia D, Bates B, et al. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence[J]. J Clin Invest, 2017, 127(3): 888-898. DOI: 10.1172/jci88508.
|
17. |
Hauser S, Kogej M, Fechner G, et al. Cell-free serum DNA in patients with bladder cancer: results of a prospective multicenter study[J]. Anticancer Res, 2012, 32(8): 3119-3124. DOI: 10.1038/onc.2011.550.
|
18. |
Berry JL, Xu L, Murphree AL, et al. Potential of aqueous humor as a surrogate tumor biopsy for retinoblastoma[J]. JAMA Ophthalmol, 2017, 135(11): 1221-1230. DOI: 10.1001/jamaophthalmol.2017.4097.
|
19. |
Liang Z, Gao KP, Wang YX, et al. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy[J]. Am J Physiol Endocrinol Metab, 2018, 315(3): 374-385. DOI: 10.1152/ajpendo.00021.2018.
|
20. |
Pan J, Liu S, Farkas M, et al. Serum molecular signature for proliferative diabetic retinopathy in Saudi patients with type 2 diabetes[J]. Mol Vis, 2016, 22: 636-645.
|
21. |
Csősz É, Deák E, Kalló G, et al. Diabetic retinopathy: proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms[J]. J Proteomics, 2017, 150: 351-358. DOI: 10.1016/j.jprot.2016.06.034.
|
22. |
牛瑞, 东莉洁, 杜雪利, 等. 卵泡抑素样蛋白1在增生型糖尿病视网膜病变进程中的潜在作用机制初步探讨[J]. 中华眼底病杂志, 2020, 36(3): 220-226. DOI: 10.3760/cma.j.cn511434-20190115-00024.Niu R, Dong LJ, Du XL, et al. A preliminary study on the potential mechanism of follicle inhibin-like protein 1 in the process of proliferative diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2020, 36(3): 220-226. DOI: 10.3760/cma.j.cn511434-20190115-00024.
|
23. |
Csősz É, Boross P, Csutak A, et al. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy[J]. J Proteomics, 2012, 75(7): 2196-2204. DOI: 10.1016/j.jprot.2012.01.019.
|
24. |
Tsybikov NN, Shovdra OL, Prutkina EV. The levels of endothelin, neuron-specific enolase, and their autoantibodies in the serum and tear fluid of patients with type 2 diabetes mellitus[J]. Vestn Oftalmol, 2010, 126(4): 14-16.
|
25. |
Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy[J/OL]. J Ophthalmol, 2014, 2014: 705783[2014-08-31]. http://europepmc.org/article/MED/25258680. DOI: 10.1155/2014/705783.
|
26. |
Vujosevic S, Micera A, Bini S, et al. Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients[J]. Acta Ophthalmol, 2016, 94(1): 56-64. DOI: 10.1111/aos.12812.
|
27. |
Ben M'Barek K, Regent F, Monville C. Use of human pluripotent stem cells to study and treat retinopathies[J]. World J Stem Cells, 2015, 7(3): 596-604. DOI: 10.4252/wjsc.v7.i3.596.
|
28. |
van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. DOI: 10.1002/path.4266.
|
29. |
Whitmore SS, Braun TA, Skeie JM, et al. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells[J]. Mol Vis, 2013, 19: 2274-2297.
|
30. |
Ashikawa Y, Nishimura Y, Okabe S, et al. Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 1/2 axis in early-stage age-related macular degeneration[J/OL]. Heliyon, 2017, 3(3): 00266[2017-03-01]. https://linkinghub.elsevier.com/retrieve/pii/S2405-8440(16)31797-2. DOI: 10.1016/j.heliyon.2017.e00266.
|
31. |
Seddon JM, McLeod DS, Bhutto IA, et al. Histopathological insights into choroidal vascular loss in clinically documented cases of age-related macular degeneration[J]. JAMA Ophthalmol, 2016, 134(11): 1272-1280. DOI: 10.1001/jamaophthalmol.2016.3519.
|
32. |
Sohn EH, Flamme-Wiese MJ, Whitmore SS, et al. Loss of CD34 expression in aging human choriocapillaris endothelial cells[J/OL]. PLoS One, 2014, 9(1): 86538[2014-01-21]. http://europepmc.org/article/MED/24466138. DOI: 10.1371/journal.pone.0086538.
|
33. |
Mullins RF, Johnson MN, Faidley EA, et al. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1606-1612. DOI: 10.1167/iovs.10-6476.
|
34. |
Songstad AE, Worthington KS, Chirco KR, et al. Connective tissue growth factor promotes efficient generation of human induced pluripotent stem cell-derived choroidal endothelium[J]. Stem Cells Transl Med, 2017, 6(6): 1533-1546. DOI: 10.1002/sctm.16-0399.
|
35. |
Crabb JW, Miyagi M, Gu X, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration[J]. Proc Natl Acad Sci USA, 2002, 99(23): 14682-14687. DOI: 10.1073/pnas.222551899.
|
36. |
Yuan X, Gu X, Crabb JS, et al. Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes[J]. Mol Cell Proteomics, 2010, 9(6): 1031-1046. DOI: 10.1074/mcp.M900523-MCP200.
|
37. |
Kim TW, Kang JW, Ahn J, et al. Proteomic analysis of the aqueous humor in age-related macular degeneration (AMD) patients[J]. J Proteome Res, 2012, 11(8): 4034-4043. DOI: 10.1021/pr300080s.
|
38. |
Koss MJ, Hoffmann J, Nguyen N, et al. Proteomics of vitreous humor of patients with exudative age-related macular degeneration[J/OL]. PLoS One, 2014, 9(5): 96895[2014-05-14]. http://europepmc.org/article/MED/24828575. DOI: 10.1371/journal.pone.0096895.
|
39. |
Nobl M, Reich M, Dacheva I, et al. Proteomics of vitreous in neovascular age-related macular degeneration[J]. Exp Eye Res, 2016, 146: 107-117. DOI: 10.1016/j.exer.2016.01.001.
|
40. |
Laíns I, Gantner M, Murinello S, et al. Metabolomics in the study of retinal health and disease[J]. Prog Retin Eye Res, 2019, 69: 57-79. DOI: 10.1016/j.preteyeres.2018.11.002.
|
41. |
Qin L, Mroczkowska SA, Ekart A, et al. Patients with early age-related macular degeneration exhibit signs of macro-and micro-vascular disease and abnormal blood glutathione levels[J]. Graefe’s Arch Clin Exp Ophthalmol, 2014, 252(1): 23-30. DOI: 10.1007/s00417-013-2418-0.
|
42. |
Ates O, Azizi S, Alp HH, et al. Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration[J]. Tohoku J Exp Med, 2009, 217(1): 17-22. DOI: 10.1620/tjem.217.17.
|
43. |
Bramall AN, Wright AF, Jacobson SG, et al. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders[J]. Annu Rev Neurosci, 2010, 33: 441-472. DOI: 10.1146/annurev-neuro-060909-153227.
|
44. |
de Bruijn SE, Verbakel SK, de Vrieze E, et al. Homozygous variants in KIAA1549, encoding a ciliary protein, are associated with autosomal recessive retinitis pigmentosa[J]. J Med Genet, 2018, 55(10): 705-712. DOI: 10.1136/jmedgenet-2018-105364.
|
45. |
Pomares E, Riera M, Permanyer J, et al. Comprehensive SNP-chip for retinitis pigmentosa-Leber congenital amaurosis diagnosis: new mutations and detection of mutational founder effects[J]. Eur J Hum Genet, 2010, 18(1): 118-124. DOI: 10.1038/ejhg.2009.114.
|
46. |
Simpson DA, Clark GR, Alexander S, et al. Molecular diagnosis for heterogeneous genetic diseases with targeted high-throughput DNA sequencing applied to retinitis pigmentosa[J]. J Med Genet, 2011, 48(3): 145-151. DOI: 10.1136/jmg.2010.083568.
|
47. |
Srilekha S, Arokiasamy T, Srikrupa NN, et al. Homozygosity Mapping in leber congenital amaurosis and autosomal recessive retinitis pigmentosa in South Indian families[J/OL]. PLoS One, 2015, 10(7): 0131679[2015-07-06]. http://europepmc.org/article/MED/26147992. DOI: 10.1371/journal.pone.0131679.
|
48. |
Wang Y, Guo L, Cai SP, et al. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa[J/OL]. PLoS One, 2012, 7(5): 33673[2012-05-31]. http://europepmc.org/article/MED/22693542. DOI: 10.1371/journal.pone.0033673.
|
49. |
Huang H, Chen Y, Chen H, et al. Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa[J/OL]. PLoS One, 2018, 13(4): 0185237[2018-04-11]. http://europepmc.org/article/MED/29641573. DOI: 10.1371/journal.pone.0185237.
|
50. |
Yang HJ, Ratnapriya R, Cogliati T, et al. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease[J]. Prog Retin Eye Res, 2015, 46: 1-30. DOI: 10.1016/j.preteyeres.2015.01.005.
|
51. |
Carrigan M, Duignan E, Malone CP, et al. Panel-based population next-generation sequencing for inherited retinal degenerations[J/OL]. Sci Rep, 2016, 6: 33248[2016-09-14]. http://europepmc.org/article/MED/27624628. DOI: 10.1038/srep33248.
|
52. |
Uren PJ, Lee JT, Doroudchi MM, et al. A profile of transcriptomic changes in the rd10 mouse model of retinitis pigmentosa[J]. Mol Vis, 2014, 20: 1612-1628.
|
53. |
Chen Y, Brooks MJ, Gieser L, et al. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa[J]. Pharmacol Res, 2017, 115: 1-13. DOI: 10.1016/j.phrs.2016.10.031.
|