Macular pigment (MP) is composed of lutein, zeaxanthin, and meso-zeaxanthin, which accumulate mainly at the macula. MP has antioxidant function and can filtering blue wave. Measurement of MP is about its optical density, that is, macular pigment optical density (MPOD). This review summarizes the function and clinical use of MP and MPOD. Researches has show that MPOD is related to some ocular disease such as age-related macular degeneration, macular telangiectasia type 2, diabetic retinopathy, Stargardt disease et al. MPOD can be used in the judgment of clinical diagnosis, treatment effect. The specific mechanism of MP metabolism in the retina and in the pathogenesis of the disease, genotype specific nutritional therapy of xanthophyll, the establishment of a database combined with artificial intelligence and the rapid and convenient MP determination are all issues of great contention that need to be resolved.
Citation: Ji Yuying, Wen Feng. Macular pigment optical density and its relation with fundus disease. Chinese Journal of Ocular Fundus Diseases, 2020, 36(6): 489-493. doi: 10.3760/cma.j.cn511434-20190411-00141 Copy
1. | Wald G. Human vision and the spectrum[J]. Science, 1945, 101(2635): 653-658. DOI: 10.1126/science.101.2635.653. |
2. | Bone RA, Landrum JT, Tarsis SL. Preliminary identification of the human macular pigment[J]. Vision Res, 1985, 25(11): 1531-1535. DOI: 10.1016/0042-6989(85)90123-3. |
3. | Bone RA, Landrum JT, Hime GW, et al. Stereochemistry of the human macular carotenoids[J]. Invest Ophthalmol Vis Sci, 1993, 34(6): 2033-2040. |
4. | Nolan JM, Meagher K, Kashani S, et al. What is meso-zeaxanthin, and where does it come from?[J]. Eye (Lond), 2013, 27(8): 899-905. DOI: 10.1038/eye.2013.98. |
5. | Arunkumar R, Gorusupudi A, Bernstein PS. The macular carotenoids: a biochemical overview[J/OL]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 2020: E158617[2020-01-10]. https://linkinghub.elsevier.com/retrieve/pii/S1388-1981(20)30009-3. DOI: 10.1016/j.bbalip.2020.158617. [published online ahead of print]. |
6. | van der Veen RL, Berendschot TT, Makridaki M, et al. Correspondence between retinal reflectometry and a flicker-based technique in the measurement of macular pigment spatial profiles[J/OL]. J Biomed Opt, 2009, 14(6): 64046[2009-12-01]. https://doi.org/10.1117/1.3275481. DOI: 10.1117/1.3275481. |
7. | Bone RA, Landrum JT, Fernandez L, et al. Analysis of the macular pigment by HPLC: retinal distribution and age study[J]. Invest Ophthalmol Vis Sci, 1988, 29(6): 843-849. |
8. | Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes[J]. Arch Biochem Biophys, 2001, 391(2): 160-164. DOI: 10.1006/abbi.2001.2411. |
9. | Trevithick-Sutton CC, Foote CS, Collins M, et al. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study[J]. Mol Vis, 2006, 12: 1127-1135. |
10. | Hammond BJ, Wooten BR, Engles M, et al. The influence of filtering by the macular carotenoids on contrast sensitivity measured under simulated blue haze conditions[J]. Vision Res, 2012, 63: 58-62. DOI: 10.1016/j.visres.2012.04.019. |
11. | Murray IJ, Makridaki M, van der Veen RL, et al. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: The CLEAR study[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 1781-1788. DOI: 10.1167/iovs.12-10715. |
12. | Loughman J, Nolan JM, Beatty S. Impact of dietary carotenoid deprivation on macular pigment and serum concentrations of lutein and zeaxanthin[J]. Br J Nutr, 2012, 108(11): 2102-2103. DOI: 10.1017/S0007114512004461. |
13. | Fujimura S, Ueda K, Nomura Y, et al. Preliminary analysis of the relationship between serum lutein and zeaxanthin levels and macular pigment optical density[J]. Clin Ophthalmol, 2016, 10: 2149-2155. DOI: 10.2147/OPTH.S119251. |
14. | Iannaccone A, Carboni G, Forma G, et al. Macular pigment optical density and measures of macular function: test-retest variability, cross-sectional correlations, and findings from the zeaxanthin pilot study of response to supplementation (ZEASTRESS-Pilot)[J]. Foods, 2016, 5(2): 32. DOI: 10.3390/foods5020032. |
15. | Hammond BR, Fletcher LM, Roos F, et al. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 8583-8589. DOI: 10.1167/iovs.14-15573. |
16. | Howells O, Eperjesi F, Bartlett H. Measuring macular pigment optical density in vivo: a review of techniques[J]. Graefe's Arch Clin Exp Ophthalmol, 2011, 249(3): 315-347. DOI: 10.1007/s00417-010-1577-5. |
17. | Putnam CM. Clinical imaging of macular pigment optical density and spatial distribution[J]. Clin Exp Optom, 2017, 100(4): 333-340. DOI: 10.1111/cxo.12500. |
18. | Bernstein PS, Li B, Vachali PP, et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease[J]. Prog Retin Eye Res, 2016, 50: 34-66. DOI: 10.1016/j.preteyeres.2015.10.003. |
19. | Obana A, Gohto Y, Sasano H, et al. Grade of cataract and its influence on measurement of macular pigment optical density using autofluorescence imaging[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 3011-3019. DOI: 10.1167/iovs.17-23699. |
20. | Conrady CD, Bell JP, Besch BM, et al. Correlations between macular, skin, and serum carotenoids[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3616-3627. DOI: 10.1167/iovs.17-21818. |
21. | Green-Gomez M, Bernstein PS, Curcio CA, et al. Standardizing the assessment of macular pigment using a Dual-Wavelength autofluorescence technique[J]. Transl Vis Sci Technol, 2019, 8(6): 41. DOI: 10.1167/tvst.8.6.41. |
22. | Arunkumar R, Calvo CM, Conrady CD, et al. What do we know about the macular pigment in AMD: the past, the present, and the future[J]. Eye (Lond), 2018, 32(5): 992-1004. DOI: 10.1038/s41433-018-0044-0. |
23. | Eye Disease Case-Control Study Group. Antioxidant status and neovascular age-related macular degeneration[J]. Arch Ophthalmol, 1993, 111(1): 104-109. DOI: 10.1001/archopht.1993.01090010108035. |
24. | Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group[J]. JAMA, 1994, 272(18): 1413-1420. DOI: 10.1001/jama.1994.03520180037032. |
25. | Ma L, Liu R, Du JH, et al. Lutein, zeaxanthin and meso-zeaxanthin supplementation associated with macular pigment optical density[J]. Nutrients, 2016, 8(7): 426. DOI: 10.3390/nu8070426. |
26. | Obana A, Hiramitsu T, Gohto Y, et al. Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population[J]. Ophthalmology, 2008, 115(1): 147-157. DOI: 10.1016/j.ophtha.2007.02.028. |
27. | Nolan JM, Stack J, O'Connell E, et al. The relationships between macular pigment optical density and its constituent carotenoids in diet and serum[J]. Invest Ophthalmol Vis Sci, 2007, 48(2): 571-582. DOI: 10.1167/iovs.06-0864. |
28. | Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 study: micronutrients in the treatment of macular degeneration[J]. Adv Nutr, 2017, 8(1): 40-53. DOI: 10.3945/an.116.013177. |
29. | Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report No. 8[J]. Arch Ophthalmol, 2001, 119(10): 1417-1436. DOI: 10.1001/archopht.119.10.1417. |
30. | Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial[J]. JAMA, 2013, 309(19): 2005-2015. DOI: 10.1001/jama.2013.4997. |
31. | Chew EY, Clemons TE, Agron E, et al. Long-term effects of vitamins c and e, beta-carotene, and zinc on age-related macular degeneration: AREDS Report No. 35[J]. Ophthalmology, 2013, 120(8): 1604-1611. DOI: 10.1016/j.ophtha.2013.01.021. |
32. | Beatty S, Chakravarthy U, Nolan JM, et al. Secondary outcomes in a clinical trial of carotenoids with coantioxidants versus placebo in early age-related macular degeneration[J]. Ophthalmology, 2013, 120(3): 600-606. DOI: 10.1016/j.ophtha.2012.08.040. |
33. | Liu R, Wang T, Zhang B, et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56(1): 252-258. DOI: 10.1167/iovs.14-15553. |
34. | van der Made SM, Kelly ER, Kijlstra A, et al. Increased macular pigment optical density and visual acuity following consumption of a buttermilk drink containing lutein-enriched egg yolks: a randomized, double-Blind, placebo-controlled trial[J/OL]. J Ophthalmol, 2016, 2016: 9035745[2016-03-14]. http://europepmc.org/article/MED/27064326. DOI: 10.1155/2016/9035745. |
35. | Chew EY, Clemons TE, Sangiovanni JP, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3[J]. JAMA Ophthalmol, 2014, 132(2): 142-149. DOI: 10.1001/jamaophthalmol.2013.7376. |
36. | Meyers KJ, Mares JA, Igo RJ, et al. Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in Age-Related Eye Disease Study (CAREDS)[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 587-599. DOI: 10.1167/iovs.13-13216. |
37. | Awh CC, Lane AM, Hawken S, et al. CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration[J]. Ophthalmology, 2013, 120(11): 2317-2323. DOI: 10.1016/j.ophtha.2013.07.039. |
38. | Hobbs RP, Bernstein PS. Nutrient supplementation for age-related macular degeneration, cataract, and dry eye[J]. J Ophthalmic Vis Res, 2014, 9(4): 487-493. DOI: 10.4103/2008-322X.150829. |
39. | Nolan JM, Power R, Stringham J, et al. Enrichment of macular pigment enhances contrast sensitivity in subjects free of retinal disease: central retinal enrichment supplementation trials - report 1[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3429-3439. DOI: 10.1167/iovs.16-19520. |
40. | Charbel IP, van der Veen RL, Stijfs A, et al. Quantification of reduced macular pigment optical density in the central retina in macular telangiectasia type 2[J]. Exp Eye Res, 2009, 89(1): 25-31. DOI: 10.1016/j.exer.2009.02.006. |
41. | Helb HM, Charbel IP, van der Veen RL, et al. Abnormal macular pigment distribution in type 2 idiopathic macular telangiectasia[J]. Retina, 2008, 28(6): 808-816. DOI: 10.1097/IAE.0b013e31816d81aa. |
42. | Chin EK, Kim DY, Hunter AR, et al. Staging of macular telangiectasia: power-Doppler optical coherence tomography and macular pigment optical density[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4459-4470. DOI: 10.1167/iovs.12-11116. |
43. | Powner MB, Gillies MC, Tretiach M, et al. Perifoveal muller cell depletion in a case of macular telangiectasia type 2[J]. Ophthalmology, 2010, 117(12): 2407-2416. DOI: 10.1016/j.ophtha.2010.04.001. |
44. | Zeimer MB, Padge B, Heimes B, et al. Idiopathic macular telangiectasia type 2: distribution of macular pigment and functional investigations[J]. Retina, 2010, 30(4): 586-595. DOI: 10.1097/IAE.0b013e3181bd2d38. |
45. | Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis: update of classification and follow-up study[J]. Ophthalmology, 1993, 100(10): 1536-1546. DOI: 10.1016/S0161-6420(93)31447-8. |
46. | Charbel IP, Heeren TF, Kupitz EH, et al. Very early disease manifestations of macular telangiectasia type 2[J]. Retina, 2016, 36(3): 524-534. DOI: 10.1097/IAE.0000000000000863. |
47. | Zeimer MB, Sallo FB, Spital G, et al. Correlation of optical coherence tomography and macular pigment optical density measurements in type 2 idiopathic macular telangiectasia[J]. Retina, 2016, 36(3): 535-544. DOI: 10.1097/IAE.0000000000000752. |
48. | Zeimer MB, Kromer I, Spital G, et al. Macular telangiectasia: patterns of distribution of macular pigment and response to supplementation[J]. Retina, 2010, 30(8): 1282-1293. DOI: 10.1097/IAE.0b013e3181e096dd. |
49. | Müller S, Charbel IP, Heeren T, et al. Macular pigment distribution as prognostic marker for disease progression in macular telangiectasia type 2[J]. Am J Ophthalmol, 2018, 194: 163-169. DOI: 10.1016/j.ajo.2018.07.017. |
50. | Tzaridis S, Hess K, Heeren T, et al. Dark adaptation in macular telangiectasia type 2[J/OL]. Retina, 2019, 2019: E1[2019-11-28]. https://doi.org/10.1097/IAE.0000000000002694. DOI: 10.1097/IAE.0000000000002694. [published online ahead of print]. |
51. | Issa PC, Gillies MC, Chew EY, et al. Macular telangiectasia type 2[J]. Prog Retin Eye Res, 2013, 34: 49-77. DOI: 10.1016/j.preteyeres.2012.11.002. |
52. | Zeimer MB, Spital G, Heimes B, et al. Macular telangiectasia--changes in macular pigment optical density during a 5-year follow-up[J]. Retina, 2014, 34(5): 920-928. DOI: 10.1097/IAE.0000000000000023. |
53. | Aleman TS, Cideciyan AV, Windsor EA, et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 1319-1329. DOI: 10.1167/iovs.06-0764. |
54. | Rougier MB, Delyfer MN, Korobelnik JF. Macular pigment distribution in Stargardt macular disease[J]. J Fr Ophtalmol, 2011, 34(5): 287-293. DOI: 10.1016/j.jfo.2011.01.013. |
55. | Waldstein SM, Hickey D, Mahmud I, et al. Two-wavelength fundus autofluorescence and macular pigment optical density imaging in diabetic macular oedema[J]. Eye (Lond), 2012, 26(8): 1078-1085. DOI: 10.1038/eye.2012.100. |
56. | Cennamo G, Lanni V, Abbate R, et al. The relationship between macular pigment and vessel density in patients with type 1 diabetes mellitus[J]. Ophthalmic Res, 2019, 61(1): 19-25. DOI: 10.1159/000492897. |
57. | Scanlon G, Mccartney D, Butler JS, et al. Identification of surrogate biomarkers for the prediction of patients at risk of low macular pigment in type 2 diabetes[J]. Curr Eye Res, 2019, 44(12): 1369-1380. DOI: 10.1080/02713683.2019.1635166. |
58. | Scanlon G, Loughman J, Farrell D, et al. A review of the putative causal mechanisms associated with lower macular pigment in diabetes mellitus[J]. Nutr Res Rev, 2019, 32(2): 247-264. DOI: 10.1017/S095442241900012X. |
59. | Fouzdar-Jain S, Suh DW, Rizzo WB. Sjogren-Larsson syndrome: a complex metabolic disease with a distinctive ocular phenotype[J]. Ophthalmic Genet, 2019, 40(4): 298-308. DOI: 10.1080/13816810.2019.1660379. |
60. | van der Veen RL, Fuijkschot J, Willemsen MA, et al. Patients with Sjogren-Larsson syndrome lack macular pigment[J]. Ophthalmology, 2010, 117(5): 966-971. DOI: 10.1016/j.ophtha.2009.10.019. |
61. | Putnam CM, Bland PJ. Macular pigment optical density spatial distribution measured in a subject with oculocutaneous albinism[J]. J Optom, 2014, 7(4): 241-245. DOI: 10.1016/j.optom.2014.03.001. |
- 1. Wald G. Human vision and the spectrum[J]. Science, 1945, 101(2635): 653-658. DOI: 10.1126/science.101.2635.653.
- 2. Bone RA, Landrum JT, Tarsis SL. Preliminary identification of the human macular pigment[J]. Vision Res, 1985, 25(11): 1531-1535. DOI: 10.1016/0042-6989(85)90123-3.
- 3. Bone RA, Landrum JT, Hime GW, et al. Stereochemistry of the human macular carotenoids[J]. Invest Ophthalmol Vis Sci, 1993, 34(6): 2033-2040.
- 4. Nolan JM, Meagher K, Kashani S, et al. What is meso-zeaxanthin, and where does it come from?[J]. Eye (Lond), 2013, 27(8): 899-905. DOI: 10.1038/eye.2013.98.
- 5. Arunkumar R, Gorusupudi A, Bernstein PS. The macular carotenoids: a biochemical overview[J/OL]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 2020: E158617[2020-01-10]. https://linkinghub.elsevier.com/retrieve/pii/S1388-1981(20)30009-3. DOI: 10.1016/j.bbalip.2020.158617. [published online ahead of print].
- 6. van der Veen RL, Berendschot TT, Makridaki M, et al. Correspondence between retinal reflectometry and a flicker-based technique in the measurement of macular pigment spatial profiles[J/OL]. J Biomed Opt, 2009, 14(6): 64046[2009-12-01]. https://doi.org/10.1117/1.3275481. DOI: 10.1117/1.3275481.
- 7. Bone RA, Landrum JT, Fernandez L, et al. Analysis of the macular pigment by HPLC: retinal distribution and age study[J]. Invest Ophthalmol Vis Sci, 1988, 29(6): 843-849.
- 8. Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes[J]. Arch Biochem Biophys, 2001, 391(2): 160-164. DOI: 10.1006/abbi.2001.2411.
- 9. Trevithick-Sutton CC, Foote CS, Collins M, et al. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study[J]. Mol Vis, 2006, 12: 1127-1135.
- 10. Hammond BJ, Wooten BR, Engles M, et al. The influence of filtering by the macular carotenoids on contrast sensitivity measured under simulated blue haze conditions[J]. Vision Res, 2012, 63: 58-62. DOI: 10.1016/j.visres.2012.04.019.
- 11. Murray IJ, Makridaki M, van der Veen RL, et al. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: The CLEAR study[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 1781-1788. DOI: 10.1167/iovs.12-10715.
- 12. Loughman J, Nolan JM, Beatty S. Impact of dietary carotenoid deprivation on macular pigment and serum concentrations of lutein and zeaxanthin[J]. Br J Nutr, 2012, 108(11): 2102-2103. DOI: 10.1017/S0007114512004461.
- 13. Fujimura S, Ueda K, Nomura Y, et al. Preliminary analysis of the relationship between serum lutein and zeaxanthin levels and macular pigment optical density[J]. Clin Ophthalmol, 2016, 10: 2149-2155. DOI: 10.2147/OPTH.S119251.
- 14. Iannaccone A, Carboni G, Forma G, et al. Macular pigment optical density and measures of macular function: test-retest variability, cross-sectional correlations, and findings from the zeaxanthin pilot study of response to supplementation (ZEASTRESS-Pilot)[J]. Foods, 2016, 5(2): 32. DOI: 10.3390/foods5020032.
- 15. Hammond BR, Fletcher LM, Roos F, et al. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 8583-8589. DOI: 10.1167/iovs.14-15573.
- 16. Howells O, Eperjesi F, Bartlett H. Measuring macular pigment optical density in vivo: a review of techniques[J]. Graefe's Arch Clin Exp Ophthalmol, 2011, 249(3): 315-347. DOI: 10.1007/s00417-010-1577-5.
- 17. Putnam CM. Clinical imaging of macular pigment optical density and spatial distribution[J]. Clin Exp Optom, 2017, 100(4): 333-340. DOI: 10.1111/cxo.12500.
- 18. Bernstein PS, Li B, Vachali PP, et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease[J]. Prog Retin Eye Res, 2016, 50: 34-66. DOI: 10.1016/j.preteyeres.2015.10.003.
- 19. Obana A, Gohto Y, Sasano H, et al. Grade of cataract and its influence on measurement of macular pigment optical density using autofluorescence imaging[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 3011-3019. DOI: 10.1167/iovs.17-23699.
- 20. Conrady CD, Bell JP, Besch BM, et al. Correlations between macular, skin, and serum carotenoids[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3616-3627. DOI: 10.1167/iovs.17-21818.
- 21. Green-Gomez M, Bernstein PS, Curcio CA, et al. Standardizing the assessment of macular pigment using a Dual-Wavelength autofluorescence technique[J]. Transl Vis Sci Technol, 2019, 8(6): 41. DOI: 10.1167/tvst.8.6.41.
- 22. Arunkumar R, Calvo CM, Conrady CD, et al. What do we know about the macular pigment in AMD: the past, the present, and the future[J]. Eye (Lond), 2018, 32(5): 992-1004. DOI: 10.1038/s41433-018-0044-0.
- 23. Eye Disease Case-Control Study Group. Antioxidant status and neovascular age-related macular degeneration[J]. Arch Ophthalmol, 1993, 111(1): 104-109. DOI: 10.1001/archopht.1993.01090010108035.
- 24. Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group[J]. JAMA, 1994, 272(18): 1413-1420. DOI: 10.1001/jama.1994.03520180037032.
- 25. Ma L, Liu R, Du JH, et al. Lutein, zeaxanthin and meso-zeaxanthin supplementation associated with macular pigment optical density[J]. Nutrients, 2016, 8(7): 426. DOI: 10.3390/nu8070426.
- 26. Obana A, Hiramitsu T, Gohto Y, et al. Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population[J]. Ophthalmology, 2008, 115(1): 147-157. DOI: 10.1016/j.ophtha.2007.02.028.
- 27. Nolan JM, Stack J, O'Connell E, et al. The relationships between macular pigment optical density and its constituent carotenoids in diet and serum[J]. Invest Ophthalmol Vis Sci, 2007, 48(2): 571-582. DOI: 10.1167/iovs.06-0864.
- 28. Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 study: micronutrients in the treatment of macular degeneration[J]. Adv Nutr, 2017, 8(1): 40-53. DOI: 10.3945/an.116.013177.
- 29. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report No. 8[J]. Arch Ophthalmol, 2001, 119(10): 1417-1436. DOI: 10.1001/archopht.119.10.1417.
- 30. Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial[J]. JAMA, 2013, 309(19): 2005-2015. DOI: 10.1001/jama.2013.4997.
- 31. Chew EY, Clemons TE, Agron E, et al. Long-term effects of vitamins c and e, beta-carotene, and zinc on age-related macular degeneration: AREDS Report No. 35[J]. Ophthalmology, 2013, 120(8): 1604-1611. DOI: 10.1016/j.ophtha.2013.01.021.
- 32. Beatty S, Chakravarthy U, Nolan JM, et al. Secondary outcomes in a clinical trial of carotenoids with coantioxidants versus placebo in early age-related macular degeneration[J]. Ophthalmology, 2013, 120(3): 600-606. DOI: 10.1016/j.ophtha.2012.08.040.
- 33. Liu R, Wang T, Zhang B, et al. Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56(1): 252-258. DOI: 10.1167/iovs.14-15553.
- 34. van der Made SM, Kelly ER, Kijlstra A, et al. Increased macular pigment optical density and visual acuity following consumption of a buttermilk drink containing lutein-enriched egg yolks: a randomized, double-Blind, placebo-controlled trial[J/OL]. J Ophthalmol, 2016, 2016: 9035745[2016-03-14]. http://europepmc.org/article/MED/27064326. DOI: 10.1155/2016/9035745.
- 35. Chew EY, Clemons TE, Sangiovanni JP, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3[J]. JAMA Ophthalmol, 2014, 132(2): 142-149. DOI: 10.1001/jamaophthalmol.2013.7376.
- 36. Meyers KJ, Mares JA, Igo RJ, et al. Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in Age-Related Eye Disease Study (CAREDS)[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 587-599. DOI: 10.1167/iovs.13-13216.
- 37. Awh CC, Lane AM, Hawken S, et al. CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration[J]. Ophthalmology, 2013, 120(11): 2317-2323. DOI: 10.1016/j.ophtha.2013.07.039.
- 38. Hobbs RP, Bernstein PS. Nutrient supplementation for age-related macular degeneration, cataract, and dry eye[J]. J Ophthalmic Vis Res, 2014, 9(4): 487-493. DOI: 10.4103/2008-322X.150829.
- 39. Nolan JM, Power R, Stringham J, et al. Enrichment of macular pigment enhances contrast sensitivity in subjects free of retinal disease: central retinal enrichment supplementation trials - report 1[J]. Invest Ophthalmol Vis Sci, 2016, 57(7): 3429-3439. DOI: 10.1167/iovs.16-19520.
- 40. Charbel IP, van der Veen RL, Stijfs A, et al. Quantification of reduced macular pigment optical density in the central retina in macular telangiectasia type 2[J]. Exp Eye Res, 2009, 89(1): 25-31. DOI: 10.1016/j.exer.2009.02.006.
- 41. Helb HM, Charbel IP, van der Veen RL, et al. Abnormal macular pigment distribution in type 2 idiopathic macular telangiectasia[J]. Retina, 2008, 28(6): 808-816. DOI: 10.1097/IAE.0b013e31816d81aa.
- 42. Chin EK, Kim DY, Hunter AR, et al. Staging of macular telangiectasia: power-Doppler optical coherence tomography and macular pigment optical density[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4459-4470. DOI: 10.1167/iovs.12-11116.
- 43. Powner MB, Gillies MC, Tretiach M, et al. Perifoveal muller cell depletion in a case of macular telangiectasia type 2[J]. Ophthalmology, 2010, 117(12): 2407-2416. DOI: 10.1016/j.ophtha.2010.04.001.
- 44. Zeimer MB, Padge B, Heimes B, et al. Idiopathic macular telangiectasia type 2: distribution of macular pigment and functional investigations[J]. Retina, 2010, 30(4): 586-595. DOI: 10.1097/IAE.0b013e3181bd2d38.
- 45. Gass JD, Blodi BA. Idiopathic juxtafoveolar retinal telangiectasis: update of classification and follow-up study[J]. Ophthalmology, 1993, 100(10): 1536-1546. DOI: 10.1016/S0161-6420(93)31447-8.
- 46. Charbel IP, Heeren TF, Kupitz EH, et al. Very early disease manifestations of macular telangiectasia type 2[J]. Retina, 2016, 36(3): 524-534. DOI: 10.1097/IAE.0000000000000863.
- 47. Zeimer MB, Sallo FB, Spital G, et al. Correlation of optical coherence tomography and macular pigment optical density measurements in type 2 idiopathic macular telangiectasia[J]. Retina, 2016, 36(3): 535-544. DOI: 10.1097/IAE.0000000000000752.
- 48. Zeimer MB, Kromer I, Spital G, et al. Macular telangiectasia: patterns of distribution of macular pigment and response to supplementation[J]. Retina, 2010, 30(8): 1282-1293. DOI: 10.1097/IAE.0b013e3181e096dd.
- 49. Müller S, Charbel IP, Heeren T, et al. Macular pigment distribution as prognostic marker for disease progression in macular telangiectasia type 2[J]. Am J Ophthalmol, 2018, 194: 163-169. DOI: 10.1016/j.ajo.2018.07.017.
- 50. Tzaridis S, Hess K, Heeren T, et al. Dark adaptation in macular telangiectasia type 2[J/OL]. Retina, 2019, 2019: E1[2019-11-28]. https://doi.org/10.1097/IAE.0000000000002694. DOI: 10.1097/IAE.0000000000002694. [published online ahead of print].
- 51. Issa PC, Gillies MC, Chew EY, et al. Macular telangiectasia type 2[J]. Prog Retin Eye Res, 2013, 34: 49-77. DOI: 10.1016/j.preteyeres.2012.11.002.
- 52. Zeimer MB, Spital G, Heimes B, et al. Macular telangiectasia--changes in macular pigment optical density during a 5-year follow-up[J]. Retina, 2014, 34(5): 920-928. DOI: 10.1097/IAE.0000000000000023.
- 53. Aleman TS, Cideciyan AV, Windsor EA, et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 1319-1329. DOI: 10.1167/iovs.06-0764.
- 54. Rougier MB, Delyfer MN, Korobelnik JF. Macular pigment distribution in Stargardt macular disease[J]. J Fr Ophtalmol, 2011, 34(5): 287-293. DOI: 10.1016/j.jfo.2011.01.013.
- 55. Waldstein SM, Hickey D, Mahmud I, et al. Two-wavelength fundus autofluorescence and macular pigment optical density imaging in diabetic macular oedema[J]. Eye (Lond), 2012, 26(8): 1078-1085. DOI: 10.1038/eye.2012.100.
- 56. Cennamo G, Lanni V, Abbate R, et al. The relationship between macular pigment and vessel density in patients with type 1 diabetes mellitus[J]. Ophthalmic Res, 2019, 61(1): 19-25. DOI: 10.1159/000492897.
- 57. Scanlon G, Mccartney D, Butler JS, et al. Identification of surrogate biomarkers for the prediction of patients at risk of low macular pigment in type 2 diabetes[J]. Curr Eye Res, 2019, 44(12): 1369-1380. DOI: 10.1080/02713683.2019.1635166.
- 58. Scanlon G, Loughman J, Farrell D, et al. A review of the putative causal mechanisms associated with lower macular pigment in diabetes mellitus[J]. Nutr Res Rev, 2019, 32(2): 247-264. DOI: 10.1017/S095442241900012X.
- 59. Fouzdar-Jain S, Suh DW, Rizzo WB. Sjogren-Larsson syndrome: a complex metabolic disease with a distinctive ocular phenotype[J]. Ophthalmic Genet, 2019, 40(4): 298-308. DOI: 10.1080/13816810.2019.1660379.
- 60. van der Veen RL, Fuijkschot J, Willemsen MA, et al. Patients with Sjogren-Larsson syndrome lack macular pigment[J]. Ophthalmology, 2010, 117(5): 966-971. DOI: 10.1016/j.ophtha.2009.10.019.
- 61. Putnam CM, Bland PJ. Macular pigment optical density spatial distribution measured in a subject with oculocutaneous albinism[J]. J Optom, 2014, 7(4): 241-245. DOI: 10.1016/j.optom.2014.03.001.