1. |
Simó R, Villarroel M, Corraliza L, et al. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy[J/OL]. J Biomed Biotechnol, 2010, 2010: 190724[2010-02-17]. https://doi.org/10.1155/2010/190724. DOI:10.1155/2010/190724.
|
2. |
Barber AJ. Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss[J]. Sci China Life Sci, 2015, 58(6): 541-549. DOI: 10.1007/s11427-015-4856-x.
|
3. |
Jiang MN, Zhou YY, Hua DH, et al. Vagal nerve stimulation attenuates ischemia-reperfusion induced retina dysfunction in acute ocular hypertension[J]. Front Neurosci, 2019, 13: 87. DOI: 10.3389/fnins.2019.00087.
|
4. |
Eliasdottir TS. Retinal oximetry and systemic arterial oxygen levels[J]. Acta Ophthalmol, 2018, 96(Suppl A113): 1-44. DOI: 10.1111/aos.13932.
|
5. |
Russo R, Varano GP, Adornetto A, et al. Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival[J]. Cell Death Dis, 2018, 9(10): 981. DOI: 10.1038/s41419-018-1044-5.
|
6. |
Ng DS, Chiang PP, Tan G, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy[J]. Clin Exp Ophthalmol, 2016, 44(4): 243-250. DOI: 10.1111/ceo.12724.
|
7. |
Araszkiewicz A, Zozulinska-Ziolkiewicz D. Retinal neurodegeneration in the course of diabetes-pathogenesis and clinical perspective[J]. Curr Neuropharmacol, 2016, 14(8): 805-809. DOI: 10.2174/1570159x14666160225154536.
|
8. |
Metea MR, Newman EA. Signalling within the neurovascular unit in the mammalian retina[J]. Exp Physiol, 2007, 92(4): 635-640. DOI: 10.1113/expphysiol.2006.036376.
|
9. |
Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives[J]. Trends Endocrinol Metab, 2014, 25(1): 23-33. DOI: 10.1016/j.tem.2013.09.005.
|
10. |
Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment[J]. Ann N Y Acad Sci, 2014, 1311: 174-190. DOI: 10.1111/nyas.12412.
|
11. |
Feng Y, Busch S, Gretz N, et al. Crosstalk in the retinal neurovascular unit - lessons for the diabetic retina[J]. Exp Clin Endocrinol Diabetes, 2012, 120(4): 199-201. DOI: 10.1055/s-0032-1304571.
|
12. |
Aung MH, Park HN, Han MK, et al. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes[J]. J Neurosci, 2014, 34(3): 726-736. DOI: 10.1523/jneurosci.3483-13.2014.
|
13. |
D'Cruz TS, Weibley BN, Kimball SR, et al. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes[J/OL]. PLoS One, 2012, 7(9): 44711[2012-09-06]. https://doi.org/10.1371/journal.pone.0044711. DOI:10.1371/journal.pone.0044711.
|
14. |
Arboleda-Velasquez JF, Valdez CN, Marko CK, et al. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy[J]. Curr Diab Rep, 2015, 15(2): 573. DOI: 10.1007/s11892-014-0573-2.
|
15. |
Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(1): 1-6. DOI: 10.1007/s00417-016-3548-y.
|
16. |
Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder[J]. Vision Res, 2017, 139: 101-107. DOI: 10.1016/j.visres.2017.03.003.
|
17. |
Hernández C, Dal Monte M, Simó R, et al. Neuroprotection as a therapeutic target for diabetic retinopathy[J/OL]. J Diabetes Res, 2016, 2016: 9508541[2016-03-31]. https://doi.org/10.1155/2016/9508541. DOI:10.1155/2016/9508541.
|
18. |
Hernández C, Simó-Servat O, Simó R. Somatostatin and diabetic retinopathy: current concepts and new therapeutic perspectives[J]. Endocrine, 2014, 46(2): 209-214. DOI: 10.1007/s12020-014-0232-z.
|
19. |
Iwona BS. Growth factors in the pathogenesis of retinal neurodegeneration in diabetes mellitus[J]. Curr Neuropharmacol, 2016, 14(8): 792-804. DOI: 10.2174/1570159x14666160813182009.
|
20. |
Farnoodian M, Sorenson CM, Sheibani N. PEDF expression affects the oxidative and inflammatory state of choroidal endothelial cells[J]. Am J Physiol Cell Physiol, 2018, 314(4): 456-472. DOI: 10.1152/ajpcell.00259.2017.
|
21. |
Hernández C, Simó R, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Somatostatin replacement: a new strategy for treating diabetic retinopathy[J]. Curr Med Chem, 2013, 20(26): 3251-3257. DOI: 10.2174/09298673113209990024.
|
22. |
Zhu L, Shen WY, Lyons B, et al. Dysregulation of inter-photoreceptor retinoid-binding protein (IRBP) after induced Müller cell disruption[J]. J Neurochem, 2015, 133(6): 909-918. DOI: 10.1111/jnc.13075.
|
23. |
Carlino D, Francavilla R, Baj G, et al. Brain-derived neurotrophic factor serum levels in genetically isolated populations: gender-specific association with anxiety disorder subtypes but not with anxiety levels or Val66Met polymorphism[J/OL]. PeerJ, 2015, 3: 1252[2015-10-29]. https://doi.org/10.7717/peerj.1252. DOI:10.7717/peerj.1252.
|
24. |
Mysona BA, Shanab AY, Elshaer SL, et al. Nerve growth factor in diabetic retinopathy: beyond neurons[J]. Expert Rev Ophthalmol, 2014, 9(2): 99-107. DOI: 10.1586/17469899.2014.903157.
|
25. |
Ola MS, Nawaz MI, El-Asrar AA, et al. Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats[J]. Cell Mol Neurobiol, 2013, 33(3): 359-367. DOI: 10.1007/s10571-012-9901-8.
|
26. |
Chakravarthy H, Devanathan V. Molecular mechanisms mediating diabetic retinal neurodegeneration: potential research avenues and therapeutic targets[J]. J Mol Neurosci, 2018, 66(3): 445-461. DOI: 10.1007/s12031-018-1188-x.
|
27. |
Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software[J/OL]. PLoS One, 2015, 10(6): 0129005[2015-06-15]. https://doi.org/10.1371/journal.pone.0129005. DOI:10.1371/journal.pone.0129005.
|
28. |
Zafar S, Sachdeva M, Frankfort BJ, et al. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies[J]. Curr Diab Rep, 2019, 19(4): 17. DOI: 10.1007/s11892-019-1134-5.
|
29. |
Lévêque PM, Zéboulon P, Brasnu E, et al. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography[J/OL]. J Ophthalmol, 2016, 2016: 6956717[2016-02-22]. https://doi.org/10.1155/2016/6956717. DOI:10.1155/2016/6956717.
|
30. |
Cao D, Yang DW, Huang ZN, et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[J]. Acta Diabetol, 2018, 55(5): 469-477. DOI: 10.1007/s00592-018-1115-1.
|
31. |
Lakhani E, Wright T, Abdolell M, et al. Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes[J]. Invest Ophthalmol Vis Sci, 2010, 51(10): 5297-5303. DOI: 10.1167/iovs.10-5200.
|
32. |
Laron M, Bearse MA Jr, Bronson-Castain K, et al. Interocular symmetry of abnormal multifocal electroretinograms in adolescents with diabetes and no retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 316-321. DOI: 10.1167/iovs.11-8825.
|
33. |
Ziccardi L, Parisi V, Picconi F, et al. Early and localized retinal dysfunction in patients with type 1 diabetes mellitus studied by multifocal electroretinogram[J]. Acta Diabetol, 2018, 55(11): 1191-1200. DOI: 10.1007/s00592-018-1209-9.
|
34. |
Awad AS, Gao T, Gvritishvili A, et al. Protective role of small pigment epithelium-derived factor (PEDF) peptide in diabetic renal injury[J]. Am J Physiol Renal Physiol, 2013, 305(6): 891-900. DOI: 10.1152/ajprenal.00149.2013.
|
35. |
Elahy M, Baindur-Hudson S, Cruzat VF, et al. Mechanisms of PEDF-mediated protection against reactive oxygen species damage in diabetic retinopathy and neuropathy[J]. J Endocrinol, 2014, 222(3): 129-139. DOI: 10.1530/joe-14-0065.
|
36. |
Hernández C, García-Ramírez M, Corraliza L, et al. Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes[J]. Diabetes, 2013, 62(7): 2569-2578. DOI: 10.2337/db12-0926.
|
37. |
Colafrancesco V, Coassin M, Rossi S, et al. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration[J]. Ann Ist Super Sanita, 2011, 47(3): 284-289. DOI: 10.4415/ann_11_03_08.
|
38. |
Rohowetz LJ, Kraus JG, Koulen P, et al. Reactive oxygen species-mediated damage of retinal neurons: drug development targets for therapies of chronic neurodegeneration of the retina[J]. Int J Mol Sci, 2018, 19(11): 3362. DOI: 10.3390/ijms19113362.
|
39. |
Mishra A, Newman EA. Inhibition of inducible nitric oxide synthase reverses the loss of functional hyperemia in diabetic retinopathy[J]. Glia, 2010, 58(16): 1996-2004. DOI: 10.1002/glia.21068.
|
40. |
Ola MS, Alhomida AS. Neurodegeneration in diabetic retina and its potential drug targets[J]. Curr Neuropharmacol, 2014, 12(4): 380-386. DOI: 10.2174/1570159x12666140619205024.
|
41. |
Kusari J, Zhou S, Padillo E, et al. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats[J]. Invest Ophthalmol Vis Sci, 2007, 48(11): 5152-5159. DOI: 10.1167/iovs.07-0427.
|
42. |
Rupenthal ID. Drug-device combination approaches for delivery to the eye[J]. Curr Opin Pharmacol, 2017, 36: 44-51. DOI: 10.1016/j.coph.2017.08.003.
|
43. |
Aiello LP. Targeting intraocular neovascularization and edema--one drop at a time[J]. N Engl J Med, 2008, 359(9): 967-969. DOI: 10.1056/NEJMcibr0804551.
|