1. |
Rodrigues GA, Shalaev E, Karami TK, et al. Pharmaceutical development of AAV-based gene therapy products for the eye[J]. Pharm Res, 2018, 36(2): 29. DOI: 10.1007/s11095-018-2554-7.
|
2. |
Madigan VJ, Asokan A. Engineering AAV receptor footprints for gene therapy[J]. Curr Opin Virol, 2016, 18: 89-96. DOI: 10.1016/j.coviro.2016.05.001.
|
3. |
Yu H, Koilkonda RD, Chou TH, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model[J]. Proc Natl Acad Sci USA, 2012, 109(20): 1238-1247. DOI: 10.1073/pnas.1119577109.
|
4. |
Lotery AJ, Yang GS, Mullins RF, et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina[J]. Hum Gene Ther, 2003, 14(17): 1663-1671. DOI: 10.1089/104303403322542301.
|
5. |
Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery[J]. Mol Ther, 2003, 7(6): 774-781. DOI: 10.1016/S1525-0016(03)00098-4.
|
6. |
Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions[J]. Methods Mol Biol, 2011, 807: 47-92. DOI: 10.1007/978-1-61779-370-7_3.
|
7. |
Van Vliet KM, Blouin V, Brument N, et al. The role of the adeno-associated virus capsid in gene transfer[J]. Methods Mol Biol, 2008, 437: 51-91. DOI: 10.1007/978-1-59745-210-6_2.
|
8. |
Duong TT, Lim J, Vasireddy V, et al. Comparative AAV-eGFP transgene expression using vector serotypes 1-9, 7m8, and 8b in human pluripotent stem cells, RPEs, and human and rat cortical neurons[J/OL]. Stem Cells Int, 2019, 2019: 7281912[2019-01-17]. https://dx.doi.org/10.1155/2019/7281912. DOI: 10.1155/2019/7281912.
|
9. |
Duong TT, Vasireddy V, Ramachandran P, et al. Use of induced pluripotent stem cell models to probe the pathogenesis of choroideremia and to develop a potential treatment[J]. Stem Cell Res, 2018, 27: 140-150. DOI: 10.1016/j.scr.2018.01.009.
|
10. |
Hughes CP, O' Flynn NMJ, Gatherer M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2019, 13: 86-98. DOI: 10.1016/j.omtm.2018.11.005.
|
11. |
Hickey DG, Edwards TL, Barnard AR, et al. Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina[J]. Gene Ther, 2017, 24(12): 787-800. DOI: 10.1038/gt.2017.85.
|
12. |
Guziewicz KE, Zangerl B, Komaromy AM, et al. Recombinant AAV-mediated BEST1 transfer to the retinal pigment epithelium: analysis of serotype-dependent retinal effects[J/OL]. PLoS One, 2013, 8(10): 75666[2013-010-15]. http://dx.plos.org/10.1371/journal.pone.0075666. DOI: 10.1371/journal.pone.0075666.
|
13. |
De Silva SR, Charbel Issa P, Singh MS, et al. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4(-/-) mouse and bipolar cells in the rd1 mouse and human retina ex vivo[J]. Gene Ther, 2016, 23(11): 767-774. DOI: 10.1038/gt.2016.54.
|
14. |
Katada Y, Kobayashi K, Tsubota K, et al. Evaluation of AAV-DJ vector for retinal gene therapy[J/OL]. PeerJ, 2019, 7: 6317[2019-01-17]. https://doi.org/10.7717/peerj.6317. DOI: 10.7717/peerj.6317.
|
15. |
Alves CH, Wijnholds J. AAV gene augmentation therapy for CRB1-associated retinitis pigmentosa[J]. Methods Mol Biol, 2018, 1715: 135-151. DOI: 10.1007/978-1-4939-7522-8_10.
|
16. |
Michalakis S, Koch S, Sothilingam V, et al. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa[J]. Adv Exp Med Biol, 2014, 801: 733-739. DOI: 10.1007/978-1-4614-3209-8_92.
|
17. |
Ghazi NG, Abboud EB, Nowilaty SR, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase Ⅰ trial[J]. Hum Genet, 2016, 135(3): 327-343. DOI: 10.1007/s00439-016-1637-y.
|
18. |
Moore NA, Morral N, Ciulla TA, et al. Gene therapy for inherited retinal and optic nerve degenerations[J]. Expert Opin Biol Ther, 2018, 18(1): 37-49. DOI: 10.1080/14712598.2018.1389886.
|
19. |
Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: initial results[J]. Ophthalmology, 2016, 123(3): 558-570. DOI: 10.1016/j.ophtha.2015.10.025.
|
20. |
Wan X, Pei H, Zhao MJ, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber's hereditary optic neuropathy[J/OL]. Sci Rep, 2016, 6: 21587[2016-02-19]. http://dx.doi.org/10.1038/srep21587. DOI: 10.1038/srep21587.
|
21. |
Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 4061-4071. DOI: 10.1167/iovs.13-11871.
|
22. |
Trapani I. Dual AAV vectors for Stargardt disease[J]. Methods Mol Biol, 2018, 1715: 153-175. DOI: 10.1007/978-1-4939-7522-8_11.
|
23. |
Dinculescu A, Stupay RM, Deng WT, et al. AAV-mediated clarin-1 expression in the mouse retina: implications for USH3A gene therapy[J/OL]. PLoS One, 2016, 11(2): 0148874[2016-02-16]. http://dx.plos.org/10.1371/journal.pone.0148874. DOI: 10.1371/journal.pone.0148874.
|
24. |
MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial[J]. Lancet, 2014, 383(9923): 1129-1137. DOI: 10.1016/S0140-6736(13)62117-0.
|
25. |
Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/S0140-6736(17)31868-8.
|
26. |
张阳阳, 戴旭锋, 张华, 等. X连锁视网膜劈裂症分子遗传学研究与基因治疗的现状及进展[J]. 中华眼底病杂志, 2016, 32(6): 657-660. DOI: 10.3670/cma.j.issn.1005-1015.2016.06.027.Zhang YY, Dai XF, Zhang H, et al. Molecular genetics and gene therapy of X-linked congenital retinoschisis[J]. Chin J Ocul Fundus Dis, 2016, 32(6): 657-660. DOI: 10.3670/cma.j.issn.1005-1015.2016.06.027.
|
27. |
Askou AL, Alsing S, Benckendorff JNE, et al. Suppression of choroidal neovascularization by AAV-based dual-acting antiangiogenic gene therapy[J]. Mol Ther Nucleic Acids, 2019, 16: 38-50. DOI: 10.1016/j.omtn.2019.01.012.
|
28. |
Lambert NG, Zhang X, Rai RR, et al. Subretinal AAV2.COMP-Ang1 suppresses choroidal neovascularization and vascular endothelial growth factor in a murine model of age-related macular degeneration[J]. Exp Eye Res, 2016, 145: 248-257. DOI: 10.1016/j.exer.2016.01.009.
|
29. |
Zhang X, Das SK, Passi SF, et al. AAV2 delivery of Flt23k intraceptors inhibits murine choroidal neovascularization[J]. Mol Ther, 2015, 23(2): 226-234. DOI: 10.1038/mt.2014.199.
|
30. |
Heier JS, Kherani S, Desai S, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial[J]. Lancet, 2017, 390(10089): 50-61. DOI: 10.1016/S0140-6736(17)30979-0.
|
31. |
Rakoczy EP, Lai CM, Magno AL, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial[J]. Lancet, 2015, 386(10011): 2395-2403. DOI: 10.1016/S0140-6736(15)00345-1.
|
32. |
Rakoczy EP, Magno AL, Lai CM, et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age related macular degeneration[J]. Am J Ophthalmol, 2019, 204: 113-123. DOI: 10.1016/j.ajo.2019.03.006.
|
33. |
Shi H, Zhu R, Hu N, et al. Association of frizzled-related protein (MFRP) and heat shock protein 70 (HSP70) single nucleotide polymorphisms with primary angle closure in a Han Chinese population: Jiangsu Eye Study[J]. Mol Vis, 2013, 19: 128-134.
|
34. |
Collery RF, Volberding PJ, Bostrom JR, et al. Loss of zebrafish MFRP causes nanophthalmia, hyperopia, and accumulation of subretinal macrophages[J]. Invest Ophthalmol Vis Sci, 2016, 57(15): 6805-6814. DOI: 10.1167/iovs.16-19593.
|
35. |
Velez G, Tsang SH, Tsai YT, et al. Gene therapy restores MFRP and corrects axial eye length[J/OL]. Sci Rep, 2017, 7(1): 16151[2017-11-23]. http://dx.doi.org/10.1038/s41598-017-16275-8. DOI: 10.1038/s41598-017-16275-8.
|
36. |
Li Y, Wu WH, Hsu CW, et al. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects[J]. Mol Ther, 2014, 22(9): 1688-1697. DOI: 10.1038/mt.2014.100.
|
37. |
Pillay S, Zou W, Cheng F, et al. AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR[J/OL]. J Virol, 2017, 91(18): e00391-17[2017-08-24]. http://jvi.asm.org/cgi/pmidlookup?view=long&pmid=28679762. DOI: 10.1128/JVI.00391-17.
|
38. |
Berns KI, Muzyczka N. AAV: an overview of unanswered questions[J]. Hum Gene Ther, 2017, 28(4): 308-313. DOI: 10.1089/hum.2017.048.
|
39. |
Grimm D, Buning H. Small but increasingly mighty: latest advances in AAV vector research, design, and evolution[J]. Hum Gene Ther, 2017, 28(11): 1075-1086. DOI: 10.1089/hum.2017.172.
|
40. |
Xiong W, Wu DM, Xue Y, et al. AAV cis-regulatory sequences are correlated with ocular toxicity[J]. Proc Natl Acad Sci USA, 2019, 116(12): 5785-5794. DOI: 10.1073/pnas.1821000116.
|