1. |
文峰, 易长贤. 临床眼底病(内科卷). 北京: 人民卫生出版社, 2015: 537-538.Wen F, Yi CX. Clinical ophthalmic disease (internal medicine volume). Beijing: People's Medical Publishing House, 2015: 537-538.
|
2. |
Li T. Leber congenital amaurosis caused by mutations in RPGRIP1[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(4): 017384[2014-11-20]. http://perspectivesinmedicine.cshlp.org/cgi/pmidlookup?view=long&pmid=25414380. DOI: 10.1101/cshperspect.a017384.
|
3. |
Koenekoop RK, Wang H, Majewski J, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration[J]. Nat Genet, 2012, 44(9): 1035-1039. DOI: 10.1038/ng.2356.
|
4. |
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. DOI: 10.1038/gim.2015.30.
|
5. |
Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis[J]. Hum Mutat, 2004, 23(4): 306-317. DOI: 10.1002/humu.20010.
|
6. |
Ruiz A, Kuehn MH, Andorf JL, et al. Genomic organization and mutation analysis of the gene encoding lecithin retinol acyltransferase in human retinal pigment epithelium[J]. Invest Ophthalmol Vis Sci, 2001, 42(1): 31-37. DOI: 10.1007/PL00007900.
|
7. |
Kitiratschky VB, Wilke R, Renner AB, et al. Mutation analysis identifies GUCY2D as the major gene responsible for autosomal dominant progressive cone degeneration[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 5015-5023. DOI: 10.1167/iovs.08-1901.
|
8. |
den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the CEP290(NPHP6) gene are a frequent cause of Leber congenital amaurosis[J]. Am J Hum Genet, 2006, 79(3): 556-561. DOI: 10.1086/507318.
|
9. |
Dryja TP, Adams SM, Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis[J]. Am J Hum Genet, 2001, 68(5): 1295-1298. DOI: 10.1086/320113.
|
10. |
Hameed A, Abid A, Aziz A, et al. Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy[J]. J Med Genet, 2003, 40(8): 616-619. DOI: 10.1136/jmg.40.8.616.
|
11. |
Patel N, Aldahmesh MA, Alkuraya H, et al. Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies[J]. Genet Med, 2016, 18(6): 554-562. DOI: 10.1038/gim.2015.127.
|
12. |
Shu X, Fry A, Tulloch B, et al. RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin[J]. Hum Mol Genet, 2005, 14(9): 1183-1197. DOI: 10.1093/hmg/ddi129.
|
13. |
Zhao D, Hong DH, Pawlyk B, et al. The retinitis pigmentosa GTPase regulator (RPGR)-interacting protein: subserving RPGR function and participating in disk morphogenesis[J]. Proc Natl Acad Sci USA, 2003, 100(7): 3965-3970. DOI: 10.1073/pnas.0637349100.
|
14. |
Patnaik SR, Raghupathy RK, Zhang X, et al. The role of RPGR and its interacting proteins in ciliopathies[J/OL]. J Ophthalmol, 2015, 2015: 414781[2015-06-01]. https://dx.doi.org/10.1155/2015/414781. DOI: 10.1155/2015/414781.
|
15. |
Le Meur G, Lebranchu P, Billaud F, et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis[J]. Mol Ther, 2018, 26(1): 256-268. DOI: 10.1016/j.ymthe.2017.09.014.
|