1. |
Fujinami K, Lois N, Davidson AE, et al. A longitudinal study of Stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations[J]. Am J Ophthalmol, 2013, 155(6): 1075-1088. DOI: 10.1016/j.ajo.2013.01.018.
|
2. |
Burke TR, Tsang SH. Allelic and phenotypic heterogeneity in ABCA4 mutations[J]. Ophthalmic Genet, 2011, 32(3): 165-174. DOI: 10.3109/13816810.2011.565397.
|
3. |
Strauss RW, Ho A, Munoz B, et al. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) studies: design and baseline characteristics: ProgStar Report No. 1[J]. Ophthalmology, 2016, 123(4): 817-828. DOI: 10.1016/j.ophtha.2015.12.009.
|
4. |
Haji Abdollahi S, Hirose T. Stargardt-Fundus flavimaculatus: recent advancements and treatment[J]. Semin Ophthalmol, 2013, 28(5-6): 372-376. DOI: 10.3109/08820538.2013.825286.
|
5. |
何颖, 戴旭锋, 张华, 等. Stargardt病基因治疗研究现状与进展[J]. 中华眼底病杂志, 2016, 32(2): 224-227. DOI: 10.3760/cma.j.issn.1005-1015.2016.02.029.He Y, Dai XF, Zhang H, et al. The status and progress in gene therapy study of Stargardt disease[J]. Chin J Ocul Fundus Dis, 2016, 32(2): 224-227. DOI: 10.3760/cma.j.issn.1005-1015.2016.02.029.
|
6. |
Rotenstreich Y, Fishman GA, Anderson RJ. Visual acuity loss and clinical observations in a large series of patients with Stargardt disease[J]. Ophthalmology, 2003, 110(6): 1151-1158. DOI: 10.1016/S0161-6420(03)00333-6.
|
7. |
Fujinami K, Zernant J, Chana RK, et al. Clinical and molecular characteristics of childhood-onset Stargardt disease[J]. Ophthalmology, 2015, 122(2): 326-334. DOI: 10.1016/j.ophtha.2014.08.012.
|
8. |
Nasonkin I, Illing M, Koehler MR, et al. Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt's disease[J]. Hum Genet, 1998, 102(1): 21-26. DOI: 10.1007/s004390050649.
|
9. |
Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease[J]. Adv Exp Med Biol, 2010, 703: 105-125. DOI: 10.1007/978-1-4419-5635-4_8.
|
10. |
Koenekoop RK. The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review[J]. Ophthalmic Genet, 2003, 24(2): 75-80. DOI: 10.1076/opge.24.2.75.13996.
|
11. |
方艳文, 张勇进. Stargardt病的病因及治疗展望[J]. 国外医学(眼科学分册), 2003, 27(5): 306-309. DOI: 10.3760/cma.j.issn.1673-5803.2003.05.013.Fang YW, Zhang YJ. The etiology and treatment progress of Stargardt disease[J]. Section Ophthalmol Foreign Med Sci, 2003, 27(5): 306-309. DOI: 10.3760/cma.j.issn.1673-5803.2003.05.013.
|
12. |
Charbel IP, Barnard AR, Herrmann P, et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization[J]. Proc Natl Acad Sci USA, 2015, 112(27): 8415-8420. DOI: 10.1073/pnas.1506960112.
|
13. |
Lu LJ, Liu J, Adelman RA. Novel therapeutics for Stargardt disease[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(6): 1057-1062. DOI: 10.1007/s00417-017-3619-8.
|
14. |
Ma L, Kaufman Y, Zhang J, et al. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease[J]. J Biol Chem, 2011, 286(10): 7966-7974. DOI: 10.1074/jbc.M110.178657.
|
15. |
Mata NL, Lichter JB, Vogel R, et al. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration[J]. Retina, 2013, 33(3): 498-507. DOI: 10.1097/IAE.0b013e318265801d.
|
16. |
Radu RA, Han Y, Bui TV, et al. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4393-4401. DOI: 10.1167/iovs.05-0820.
|
17. |
Camerini T, Mariani L, De Palo G, et al. Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer[J]. J Clin Oncol, 2001, 19(6): 1664-1670. DOI: 10.1200/JCO.2001.19.6.1664.
|
18. |
Costa A, Malone W, Perloff M, et al. Tolerability of the synthetic retinoid fenretinide (HPR)[J]. Eur J Cancer Clin Oncol, 1989, 25(5): 805-808. DOI: 10.1016/0277-5379(89)90124-7.
|
19. |
Baglietto L, Torrisi R, Arena G, et al. Ocular effects of fenretinide, a vitamin A analog, in a chemoprevention trial of bladder cancer[J]. Cancer Detect Prev, 2000, 24(4): 369-375.
|
20. |
Dobri N, Qin Q, Kong J, et al. A1120, a nonretinoid RBP4 antagonist, inhibits formation of cytotoxic bisretinoids in the animal model of enhanced retinal lipofuscinogenesis[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 85-95. DOI: 10.1167/iovs.12-10050.
|
21. |
Hussain RM, Ciulla TA, Berrocal AM, et al. Stargardt macular dystrophy and evolving therapies[J]. Expert Opin Biol Ther, 2018, 18(10): 1049-1059. DOI: 10.1080/14712598.2018.1513486.
|
22. |
Waugh N, Loveman E, Colquitt J, et al. Treatments for dry age-related macular degeneration and Stargardt disease: a systematic review[J]. Health Technol Assess, 2018, 22(27): 1-168. DOI: 10.3310/hta22270.
|
23. |
Kubota R, Boman NL, David R, et al. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator[J]. Retina, 2012, 32(1): 183-188. DOI: 10.1097/IAE.0b013e318217369e.
|
24. |
Rosenfeld PJ, Dugel PU, Holz FG, et al. Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial[J]. Ophthalmology, 2018, 125(10): 1556-1567. DOI: 10.1016/j.ophtha.2018.03.059.
|
25. |
Dugel PU, Novack RL, Csaky KG, et al. Phase ii, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration[J]. Retina, 2015, 35(6): 1173-1183. DOI: 10.1097/IAE.0000000000000606.
|
26. |
Briggs CE, Rucinski D, Rosenfeld PJ, et al. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration[J]. Invest Ophthalmol Vis Sci, 2001, 42(10): 2229-2236.
|
27. |
Battaglia Parodi M, La Spina C, Corradetti G, et al. Retinal hereditary and degenerative/dystrophic diseases (non-age-related macular degeneration)[J]. Dev Ophthalmol, 2016, 55: 205-211. DOI: 10.1159/000431125.
|
28. |
Zhou J, Kim SR, Westlund BS, et al. Complement activation by bisretinoid constituents of RPE lipofuscin[J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 1392-1399. DOI: 10.1167/iovs.08-2868.
|
29. |
Zhou J, Jang YP, Kim SR, et al. Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium[J]. Proc Natl Acad Sci USA, 2006, 103(44): 16182-16187. DOI: 10.1073/pnas.0604255103.
|
30. |
Radu RA, Hu J, Yuan Q, et al. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration[J]. J Biol Chem, 2011, 286(21): 18593-18601. DOI: 10.1074/jbc.M110.191866.
|
31. |
Maeda A, Golczak M, Chen Y, et al. Primary amines protect against retinal degeneration in mouse models of retinopathies[J]. Nat Chem Biol, 2011, 8(2): 170-178. DOI: 10.1038/nchembio.759.
|
32. |
Piccardi M, Fadda A, Martelli F, et al. Antioxidant saffron and central retinal function in ABCA4-related Stargardt macular dystrophy[J/OL]. Nutrients, 2019, 11(10): 2461[2019-10-15]. https://pubmed.ncbi.nlm.nih.gov/31618812/. DOI: 10.3390/nu11102461.
|
33. |
Aleman TS, Cideciyan AV, Windsor EA, et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 1319-1329. DOI: 10.1167/iovs.06-0764.
|
34. |
Prokopiou E, Kolovos P, Kalogerou M, et al. Omega-3 fatty acids supplementation: therapeutic potential in a mouse model of Stargardt disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2757-2767. DOI: 10.1167/iovs.17-23523.
|
35. |
Teussink MM, Lee MD, Smith RT, et al. The effect of light deprivation in patients with Stargardt disease[J]. Am J Ophthalmol, 2015, 159(5): 964-972. DOI: 10.1016/j.ajo.2015.02.004.
|
36. |
Radu RA, Yuan Q, Hu J, et al. Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation[J]. Invest Ophthalmol Vis Sci, 2008, 49(9): 3821-3829. DOI: 10.1167/iovs.07-1470.
|
37. |
Rahman N, Georgiou M, Khan KN, et al. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options[J]. Br J Ophthalmol, 2020, 104(4): 451-460. DOI: 10.1136/bjophthalmol-2019-315086.
|
38. |
沈科炯, 沈吟. 遗传性视网膜疾病腺相关病毒载体基因治疗新进展[J]. 中华眼底病杂志, 2020, 36(3): 242-243. DOI: 10.3760/cma.j.cn511434-20190705-00214.Shen KJ, Shen Y. New advances in gene therapy with adenoviral vectors for inherited retinal diseases[J]. Chin J Ocul Fundus Dis, 2020, 36(3): 242-243. DOI: 10.3760/cma.j.cn511434-20190705-00214.
|
39. |
东莉洁, 张慧, 王琼, 等. 以病毒为载体的基因转导技术在眼科研究中的应用[J]. 中华眼底病杂志, 2020, 36(2): 165-171. DOI: 10.3760/cma.j.issn.1005-1015.2020.02.019.Dong LJ, Zhang H, Wang Q, et al. Application of virus-mediated gene transduction technology in ophthalmology research[J]. Chin J Ocul Fundus Dis, 2020, 36(2): 165-171. DOI: 10.3760/cma.j.issn.1005-1015.2020.02.019.
|
40. |
庞继景, 徐帆. 遗传性视网膜疾病基因治疗趋势与面临的挑战[J]. 中华眼底病杂志, 2016, 32(6): 569-572. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.002.Pang JJ, Xu F. Progress and challenge of gene therapy on inherited retinal diseases[J]. Chin J Ocul Fundus Dis, 2016, 32(6): 569-572. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.002.
|
41. |
邱一果, 杨红霞, 李秋红, 等. 视网膜疾病基因治疗现状与前景[J]. 中华眼底病杂志, 2011, 27(5): 494-496. DOI: 10.3760/cma.j.issn.1005-1015.2011.05.026.Qiu YG, Yang HX, Li QH, et al. The current status and prospect of gene therapy for retinal diseases[J]. Chin J Ocul Fundus Dis, 2011, 27(5): 494-496. DOI: 10.3760/cma.j.issn.1005-1015.2011.05.026.
|
42. |
Hoffman LM, Maguire AM, Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery[J]. Invest Ophthalmol Vis Sci, 1997, 38(11): 2224-2233.
|
43. |
Dicarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina[J]. J Clin Invest, 2018, 128(6): 2177-2188. DOI: 10.1172/JCI120429.
|
44. |
李光辉, 曾芳, 王晔恺, 等. 腺相关病毒载体在视网膜色素变性基因治疗中的应用研究进展[J]. 中华眼底病杂志, 2014, 30(6): 636-639. DOI: 10.3760/cma.j.issn.1005-1015.2014.06.031.Li GH, Zeng F, Wang YK, et al. Advances in the application of adeno-associated virus vectors in gene therapy for retinitis pigmentosa[J]. Chin J Ocul Fundus Dis, 2014, 30(6): 636-639. DOI: 10.3760/cma.j.issn.1005-1015.2014.06.031.
|
45. |
Allocca M, Doria M, Petrillo M, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice[J]. J Clin Invest, 2008, 118(5): 1955-1964. DOI: 10.1172/JCI34316.
|
46. |
Dong B, Nakai H, Xiao W. Characterization of genome integrity for oversized recombinant AAV vector[J]. Mol Ther, 2010, 18(1): 87-92. DOI: 10.1038/mt.2009.258.
|
47. |
Hirsch ML, Li C, Bellon I, et al. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway[J]. Mol Ther, 2013, 21(12): 2205-2216. DOI: 10.1038/mt.2013.184.
|
48. |
Trapani I, Colella P, Sommella A, et al. Effective delivery of large genes to the retina by dual AAV vectors[J]. EMBO Mol Med, 2014, 6(2): 194-211. DOI: 10.1002/emmm.201302948.
|
49. |
Trapani I, Toriello E, de Simone S, et al. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease[J]. Hum Mol Genet, 2015, 24(23): 6811-6825. DOI: 10.1093/hmg/ddv386.
|
50. |
Colella P, Trapani I, Cesi G, et al. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors[J]. Gene Ther, 2014, 21(4): 450-456. DOI: 10.1038/gt.2014.8.
|
51. |
Dyka FM, Molday LL, Chiodo VA, et al. Dual ABCA4-AAV vector treatment reduces pathogenic retinal A2E accumulation in a mouse model of autosomal recessive Stargardt disease[J]. Hum Gene Ther, 2019, 30(11): 1361-1370. DOI: 10.1089/hum.2019.132.
|
52. |
Kong J, Kim SR, Binley K, et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy[J]. Gene Ther, 2008, 15(19): 1311-1320. DOI: 10.1038/gt.2008.78.
|
53. |
Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 4061-4071. DOI: 10.1167/iovs.13-11871.
|
54. |
宋清露, 刘庆淮, 范国平. 遗传性视网膜变性基因治疗临床试验研究现状与进展[J]. 中华眼底病杂志, 2016, 32(6): 650-654. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.025.Song QL, Liu QH, Fan GP. Current clinical trials and progress of gene therapy for the treatment of inherited retinal degenerations[J]. Chin J Ocul Fundus Dis, 2016, 32(6): 650-654. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.025.
|
55. |
Tanna P, Strauss RW, Fujinami K, et al. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options[J]. Br J Ophthalmol, 2017, 101(1): 25-30. DOI: 10.1136/bjophthalmol-2016-308823.
|
56. |
Han Z, Conley SM, Makkia RS, et al. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice[J]. J Clin Invest, 2012, 122(9): 3221-3226. DOI: 10.1172/JCI64833.
|
57. |
Han Z, Conley SM, Makkia R, et al. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery[J/OL]. PLoS One, 2012, 7(12): e52189[2012-12-18]. https://pubmed.ncbi.nlm.nih.gov/23272225/. DOI: 10.1371/journal.pone.0052189.
|
58. |
Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther, 2016, 24(3): 556-563. DOI: 10.1038/mt.2015.220.
|
59. |
Bakondi B. In vivo versus ex vivo CRISPR therapies for retinal dystrophy[J]. Expert Rev Ophthalmol, 2016, 11(6): 397-400. DOI: 10.1080/17469899.2016.1251316.
|
60. |
Shin J, Jiang F, Liu JJ, et al. Disabling Cas9 by an anti-CRISPR DNA mimic[J/OL]. Sci Adv, 2017, 3(7): e1701620[2017-07-12]. https://pubmed.ncbi.nlm.nih.gov/28706995/.DOI: 10.1126/sciadv.1701620.
|
61. |
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587): 490-495. DOI: 10.1038/nature16526.
|
62. |
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering[J]. Science, 2018, 361(6405): 866-869. DOI: 10.1126/science.aat5011.
|
63. |
Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration[J]. Stem Cells, 2009, 27(9): 2126-2135. DOI: 10.1002/stem.149.
|
64. |
Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration[J]. Ophthalmology, 2018, 125(11): 1765-1775. DOI: 10.1016/j.ophtha.2018.04.037.
|
65. |
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI: 10.1016/S0140-6736(14)61376-3.
|
66. |
Schwartz SD, Tan G, Hosseini H, et al. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years[J]. Invest Ophthalmol Vis Sci, 2016, 57(5): 1-9. DOI: 10.1167/iovs.15-18681.
|