1. |
Neelam K, Cheung CM, Ohno-Matsui K, et al. Choroidal neovascularization in pathological myopia[J]. Prog Retin Eye Res, 2012, 31(5): 495-525. DOI: 10.1016/j.preteyeres.2012.04.001.
|
2. |
Curtin BJ. Physiologic vs pathologic myopia: genetics vs environment[J]. Ophthalmology, 1979, 86(5): 681-691. DOI: 10.1016/s0161-6420(79)35466-5.
|
3. |
Huang Y, Kee CS, Hocking PM, et al. A genome-wide association study for susceptibility to visual experience-induced myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 559-569. DOI: 10.1167/iovs.18-25597.
|
4. |
Wei Q, Jiang C, Ye X, et al. Vitreous proteomics provides new insights into antivascular endothelial growth factor therapy for pathologic myopia choroid neovascularization[J]. J Interferon Cytokine Res, 2019, 39(12): 786-796. DOI: 10.1089/jir.2019.0030.
|
5. |
Tse JS, Lam TC, Cheung JK, et al. Data on assessment of safety and tear proteome change in response to orthokeratology lens-insight from integrating clinical data and next generation proteomics[J/OL]. Data Brief, 2020, 29: 105186[2020-01-28]. https://pubmed.ncbi.nlm.nih.gov/32071970/. DOI: 10.1016/j.dib.2020.105186.
|
6. |
Latosinska A, Vougas K, Makridakis M, et al. Comparative analysis of label-free and 8-plex iTRAQ approach for quantitative tissue proteomic analysis[J/OL]. PLoS One, 2015, 10(9): e0137048[2015-09-02]. https://pubmed.ncbi.nlm.nih.gov/26331617/. DOI: 10.1371/journal.pone.0137048.
|
7. |
Huang Q, Yang L, Luo J, et al. SWATH enables precise label-free quantification on proteome scale[J]. Proteomics, 2015, 15(7): 1215-1223. DOI: 10.1002/pmic.201400270.
|
8. |
Barbas-Bernardos C, Armitage EG, Garcia A, et al. Looking into aqueous humor through metabolomics spectacles-exploring its metabolic characteristics in relation to myopia[J]. J Pharm Biomed Anal, 2016, 127: 18-25. DOI: 10.1016/j.jpba.2016.03.032.
|
9. |
Ji Y, Rao J, Rong X, et al. Metabolic characterization of human aqueous humor in relation to high myopia[J]. Exp Eye Res, 2017, 159: 147-155. DOI: 10.1016/j.exer.2017.03.004.
|
10. |
Duan X, Lu Q, Xue P, et al. Proteomic analysis of aqueous humor from patients with myopia[J]. Mol Vis, 2008, 14: 370-377. DOI: 10.1016/j.moicatb.2007.10.003.
|
11. |
Wildschutz L, Ackermann D, Witten A, et al. Transcriptomic and proteomic analysis of iris tissue and aqueous humor in juvenile idiopathic arthritis-associated uveitis[J]. J Autoimmun, 2019, 100: 75-83. DOI: 10.1016/j.jaut.2019.03.004.
|
12. |
Yang Q, Lu H, Song X, et al. iTRAQ-based proteomics investigation of aqueous humor from patients with Coats' disease[J/OL]. PLoS One, 2016, 11(7): e0158611[2016-07-14]. https://pubmed.ncbi.nlm.nih.gov/27416065/. DOI: 10.1371/journal.pone.0158611.
|
13. |
Kang GY, Bang JY, Choi AJ, et al. Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration[J]. J Proteome Res, 2014, 13(2): 581-595. DOI: 10.1021/pr400751k.
|
14. |
Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy[J]. Am J Ophthalmol, 2015, 159(5): 877-883. DOI: 10.1016/j.ajo.2015.01.022.
|
15. |
Qu SC, Xu D, Li TT, et al. iTRAQ-based proteomics analysis of aqueous humor in patients with dry age-related macular degeneration[J]. Int J Ophthalmol, 2019, 12(11): 1758-1766. DOI: 10.18240/ijo.2019.11.15.
|
16. |
Pollreisz A, Funk M, Breitwieser FP, et al. Quantitative proteomics of aqueous and vitreous fluid from patients with idiopathic epiretinal membranes[J]. Exp Eye Res, 2013, 108: 48-58. DOI: 10.1016/j.exer.2012.11.010.
|
17. |
Kim MS, Gu BH, Song S, et al. ITI-H4, as a biomarker in the serum of recurrent pregnancy loss (RPL) patients[J]. Mol Biosyst, 2011, 7(5): 1430-1440. DOI: 10.1039/c0mb00219d.
|
18. |
Ji Y, Rong X, Ye H, et al. Proteomic analysis of aqueous humor proteins associated with cataract development[J]. Clin Biochem, 2015, 48(18): 1304-1309. DOI: 10.1016/j.clinbiochem.2015.08.006.
|
19. |
Clark SJ, Bishop PN. The eye as a complement dysregulation hotspot[J]. Semin Immunopathol, 2018, 40(1): 65-74. DOI: 10.1007/s00281-017-0649-6.
|
20. |
Skeie JM, Mahajan VB. Proteomic landscape of the human choroid-retinal pigment epithelial complex[J]. JAMA Ophthalmol, 2014, 132(11): 1271-1281. DOI: 10.1001/jamaophthalmol.2014.2065.
|
21. |
Rada JA, Shelton S, Norton TT. The sclera and myopia[J]. Exp Eye Res, 2006, 82(2): 185-200. DOI: 10.1016/j.exer.2005.08.009.
|
22. |
Kano H, Kobayashi K, Herrmann R, et al. Deficiency of alpha-dystroglycan in muscle-eye-brain disease[J]. Biochem Biophys Res Commun, 2002, 291(5): 1283-1286. DOI: 10.1006/bbrc.2002.6608.
|
23. |
Jiao H, Manya H, Wang S, et al. Novel POMGnT1 mutations cause muscle-eye-brain disease in Chinese patients[J]. Mol Genet Genomics, 2013, 288(7-8): 297-308. DOI: 10.1007/s00438-013-0749-5.
|
24. |
Thapa N, Lee BH, Kim IS. TGFBIp/betaig-h3 protein: a versatile matrix molecule induced by TGF-beta[J]. Int J Biochem Cell Biol, 2007, 39(12): 2183-2194. DOI: 10.1016/j.biocel.2007.06.004.
|
25. |
Flitcroft DI, Loughman J, Wildsoet CF, et al. Novel myopia genes and pathways identified from syndromic forms of myopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 338-348. DOI: 10.1167/iovs.17-22173.
|
26. |
Wu WW, Molday RS. Defective discoidin domain structure, subunit assembly, and endoplasmic reticulum processing of retinoschisin are primary mechanisms responsible for X-linked retinoschisis[J]. J Biol Chem, 2003, 278(30): 28139-28146. DOI: 10.1074/jbc.M302464200.
|
27. |
Sauer CG, Gehrig A, Warneke-Wittstock R, et al. Positional cloning of the gene associated with X-linked juvenile retinoschisis[J]. Nat Genet, 1997, 17(2): 164-170. DOI: 10.1038/ng1097-164.
|
28. |
Weber BH, Schrewe H, Molday LL, et al. Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure[J]. Proc Natl Acad Sci USA, 2002, 99(9): 6222-6227. DOI: 10.1073/pnas.092528599.
|