1. |
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye Vis (Lond), 2015, 2: 17. DOI: 10.1186/s40662-015-0026-2.
|
2. |
李筱荣, 刘巨平. 重视糖尿病眼部并发症的诊断和治疗[J]. 中华实验眼科杂志, 2017, 35(7): 577-580. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.001.Li XR, Liu JP. Paying close attention to diagnosis and management of diabetic ocular complications[J]. Chin J Exp Ophthalmol, 2017, 35(7): 577-580. DOI: 10.3760/cma.j.issn.2095-0160.2017.07.001.
|
3. |
Lai AK, Lo AC. Animal models of diabetic retinopathy: summary and comparison[J/OL]. J Diabetes Res, 2013, 2013: 106594[2013-10-27]. https://pubmed.ncbi.nlm.nih.gov/24286086/. DOI: 10.1155/2013/106594.
|
4. |
Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite[J]. Nitric Oxide, 2017, 70: 9-24. DOI: 10.1016/j.niox.2017.08.003.
|
5. |
Ren Z, Li W, Zhao Q, et al. The impact of 1, 25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor-β1 in the retinas of rats with diabetes[J]. Diabetes Res Clin Pract, 2012, 98(3): 474-480. DOI: 10.1016/j.diabres.2012.09.028.
|
6. |
Eleazu CO, Eleazu KC, Chukwuma S, et al. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans[J]. J Diabetes Metab Disord, 2013, 12(1): 60. DOI: 10.1186/2251-6581-12-60.
|
7. |
Kang HS, Yang H, Ahn C, et al. Effects of xenoestrogens on streptozotocin-induced diabetic mice[J]. J Physiol Pharmacol, 2014, 65(2): 273-282.
|
8. |
Goyal SN, Reddy NM, Patil KR, et al. Challenges and issues with streptozotocin-induced diabetes-a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics[J]. Chem Biol Interact, 2016, 244: 49-63. DOI: 10.1016/j.cbi.2015.11.032.
|
9. |
Elsner M, Guldbakke B, Tiedge M, et al. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin[J]. Diabetologia, 2000, 43(12): 1528-1533. DOI: 10.1007/s001250051564.
|
10. |
Furman B. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2015, 70: 5.47.1-5.47.20. DOI: 10.1002/0471141755.ph0547s70.
|
11. |
Martin PM, Roon P, Van Ells TK, et al. Death of retinal neurons in streptozotocin-induced diabetic mice[J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3330-3336. DOI: 10.1167/iovs.04-0247.
|
12. |
高红梅, 王俭勤. STZ腹腔注射建立小鼠糖尿病模型的效果及稳定性研究[J]. 甘肃医药, 2018, 37(3): 193-195. DOI: 10.15975/j.cnki.gsyy.2018.03.001.Gao HM, Wang JQ. Study on the effect and stability of diabetic mice model established by intraperitoneal injection of STZ[J]. Gansu Medical Journal, 2018, 37(3): 193-195. DOI: 10.15975/j.cnki.gsyy.2018.03.001.
|
13. |
Feit-Leichman RA, Kinouchi R, Takeda M, et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes[J]. Invest Ophthalmol Vis Sci, 2005, 46(11): 4281-4287. DOI: 10.1167/iovs.04-1361.
|
14. |
Kumar S, Zhuo L. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model[J]. Exp Eye Res, 2010, 91(4): 530-536. DOI: 10.1016/j.exer.2010.07.010.
|
15. |
Su L, Ji J, Bian J, et al. Tacrolimus (FK506) prevents early retinal neovascularization in streptozotocin-induced diabetic mice[J]. Int Immunopharmacol, 2012, 14(4): 606-612. DOI: 10.1016/j.intimp.2012.09.010.
|
16. |
Yang Y, Hayden MR, Sowers S, et al. Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes[J]. Oxid Med Cell Longev, 2010, 3(6): 392-403. DOI: 10.4161/oxim.3.6.14786.
|
17. |
Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations[J]. Exp Eye Res, 2002, 74(5): 615-625. DOI: 10.1006/exer.2002.1170.
|
18. |
Ly A, Yee P, Vessey K, et al. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss[J]. Invest Ophthalmol Vis Sci, 2011, 52(13): 9316-9326. DOI: 10.1167/iovs.11-7879.
|
19. |
Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening[J]. Pharmacol Res, 2005, 52(4): 313-320. DOI: 10.1016/j.phrs.2005.05.004.
|
20. |
Salido EM, de Zavalía N, Schreier L, et al. Retinal changes in an experimental model of early type 2 diabetes in rats characterized by non-fasting hyperglycemia[J]. Exp Neurol, 2012, 236(1): 151-160. DOI: 10.1016/j.expneurol.2012.04.010.
|
21. |
Doczi-Keresztesi Z, Jung J, Kiss I, et al. Retinal and renal vascular permeability changes caused by stem cell stimulation in alloxan-induced diabetic rats, measured by extravasation of fluorescein[J]. In Vivo, 2012, 26(3): 427-435.
|
22. |
Weerasekera LY, Balmer LA, Ram R, et al. Characterization of retinal vascular and neural damage in a novel model of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3721-3730. DOI: 10.1167/iovs.14-16289.
|
23. |
Gaucher D, Chiappore JA, Pâques M, et al. Microglial changes occur without neural cell death in diabetic retinopathy[J]. Vision Res, 2007, 47(5): 612-623. DOI: 10.1016/j.visres.2006.11.017.
|
24. |
Joussen AM, Doehmen S, Le ML, et al. TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations[J]. Mol Vis, 2009, 15: 1418-1428.
|
25. |
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004, 18(12): 1450-1452. DOI: 10.1096/fj.03-1476fje.
|
26. |
Jonasson O, Jones CW, Bauman A, et al. The pathophysiology of experimental insulin-deficient diabetes in the monkey. Implications for pancreatic transplantation[J]. Ann Surg, 1985, 201(1): 27-39.
|
27. |
Liu G, Zhang W, Xiao Y, et al. Critical role of IP-10 on reducing experimental corneal neovascularization[J]. Curr Eye Res, 2015, 40(9): 891-901. DOI: 10.3109/02713683.2014.968934.
|
28. |
Connor KM, Krah NM, Dennison RJ, et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis[J]. Nat Protoc, 2009, 4(11): 1565-1573. DOI: 10.1038/nprot.2009.187.
|
29. |
Stahl A, Connor KM, Sapieha P, et al. The mouse retina as an angiogenesis model[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2813-2826. DOI: 10.1167/iovs.10-5176.
|
30. |
Shao Y, Chen J, Li XR, et al. Detection and quantification of retinal neovascularization using BrdU incorporation[J]. Transl Vis Sci Technol, 2020, 9(9): 4. DOI: 10.1167/tvst.9.9.4.
|
31. |
van Wijngaarden P, Coster DJ, Brereton HM, et al. Strain-dependent differences in oxygen-induced retinopathy in the inbred rat[J]. Invest Ophthalmol Vis Sci, 2005, 46(4): 1445-1452. DOI: 10.1167/iovs.04-0708.
|
32. |
Soetikno BT, Yi J, Shah R, et al. Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model[J/OL]. Sci Rep, 2015, 5: 16752[2015-11-18]. https://pubmed.ncbi.nlm.nih.gov/26576731/. DOI: 10.1038/srep16752.
|
33. |
李蓉, 姚国敏, 王小娣. 改良视网膜铺片联合免疫荧光染色技术在氧诱导视网膜病变模型中的应用[J]. 中华实验眼科, 2016, 34(12): 1077-1080. DOI: 10.3760/cma.j.issn.2095-0160.2016.12.005.Li R, Yao GM, Wang XD. Application of modified retinal flatmount combined with immunofluorescence staining in oxygen-induced retinopathy model[J]. Chin J Exp Ophthalmol, 2016, 34(12): 1077-1080. DOI: 10.3760/cma.j.issn.2095-0160.2016.12.005.
|
34. |
Wang F, Bai Y, Yu W, et al. Anti-angiogenic effect of KH902 on retinal neovascularization[J]. Graefe's Arch Clin Exp Ophthalmol, 2013, 251(9): 2131-2139. DOI: 10.1007/s00417-013-2392-6.
|
35. |
Cao R, Jensen L, Söll I, et al. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy[J/OL]. PLoS One, 2008, 3(7): e2748[2008-07-23].https://pubmed.ncbi.nlm.nih.gov/18648503/. DOI: 10.1371/journal.pone.0002748.
|
36. |
Barber AJ, Antonetti DA, Kern TS, et al. The ins2akita mouse as a model of early retinal complications in diabetes[J]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2210-2218. DOI: 10.1167/iovs.04-1340.
|
37. |
Gastinger MJ, Kunselman AR, Conboy EE, et al. Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice[J]. Invest Ophthalmol Vis Sci, 2008, 49(6): 2635-2642. DOI: 10.1167/iovs.07-0683.
|
38. |
Tang L, Zhang Y, Jiang Y, et al. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes[J]. Exp Biol Med (Maywood), 2011, 236(9): 1051-1063. DOI: 10.1258/ebm.2011.010400.
|
39. |
Cheung AK, Fung MK, Lo AC, et al. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice[J]. Diabetes, 2005, 54(11): 3119-3125. DOI: 10.2337/diabetes.54.11.3119.
|
40. |
van Eeden PE, Tee LB, Lukehurst S, et al. Early vascular and neuronal changes in a vegf transgenic mouse model of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2006, 47(10): 4638-4645. DOI: 10.1167/iovs.06-0251.
|
41. |
hen WY, Lai CM, Graham CE, et al. Long-term global retinal microvascular changes in a transgenic vascular endothelial growth factor mouse model[J]. Diabetologia, 2006, 49(7): 1690-1701. DOI: 10.1007/s00125-006-0274-8.
|
42. |
Rakoczy EP, Ali Rahman IS, Binz N, et al. Characterization of a mouse model of hyperglycemia and retinal neovascularization[J]. Am J Pathol, 2010, 177(5): 2659-2670. DOI: 10.2353/ajpath.2010.090883.
|
43. |
Chaurasia SS, Lim RR, Parikh BH, et al. The NLRP3 inflammasome may contribute to pathologic neovascularization in the advanced stages of diabetic retinopathy[J/OL]. Sci Rep, 2018, 8(1): 2847-2862[2018-02-12]. https://pubmed.ncbi.nlm.nih.gov/29434227/. DOI: 10.1038/s41598-018-21198-z.
|
44. |
Wisniewska-Kruk J, Klaassen I, Vogels I, et al. Molecular analysis of blood-retinal barrier loss in the akimba mouse, a model of advanced diabetic retinopathy[J]. Exp Eye Res, 2014, 122: 123-131. DOI: 10.1016/j.exer.2014.03.005.
|
45. |
Xu W, Wu Y, Hu Z, et al. Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity[J]. Mol Ther Nucleic Acids, 2019, 16: 778-790. DOI: 10.1016/j.omtn.2019.04.029.
|