1. |
Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema[J]. Curr Diab Rep, 2012, 12(4): 346-354. DOI: 10.1007/s11892-012-0283-6.
|
2. |
Elman MJ, Bressler NM, Qin H, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema[J]. Ophthalmology, 2011, 118(4): 609-614. DOI: 10.1016/j.ophtha.2010.12.033.
|
3. |
Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase Ⅲ trials: RISE and RIDE[J]. Ophthalmology, 2013, 120(10): 2013-2022. DOI: 10.1016/j.ophtha.2013.02.034.
|
4. |
Do DV, Nguyen QD, Boyer D, et al. One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema[J]. Ophthalmology, 2012, 119(8): 1658-1665. DOI: 10.1016/j.ophtha.2012.02.010.
|
5. |
Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema[J]. N Engl J Med, 2015, 372(13): 1193-1203. DOI: 10.1056/NEJMoa1414264.
|
6. |
Dehghan MH, Salehipour M, Naghib J, et al. Pars plana vitrectomy with internal limiting membrane peeling for refractory diffuse diabetic macular edema[J]. J Ophthalmic Vis Res, 2010, 5(3): 162-167.
|
7. |
Figueroa MS, Contreras I, Noval S. Surgical and anatomical outcomes of pars plana vitrectomy for diffuse nontractional diabetic macular edema[J]. Retina, 2008, 28(3): 420-426. DOI: 10.1097/IAE.0b013e318159e7d2.
|
8. |
Kimura T, Kiryu J, Nishiwaki H, et al. Efficacy of surgical removal of the internal limiting membrane in diabetic cystoid macular edema[J]. Retina, 2005, 25(4): 454-461. DOI: 10.1097/00006982-200506000-00010.
|
9. |
Stefánsson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology[J]. Acta Ophthalmol Scand, 2001, 79(5): 435-440. DOI: 10.1034/j.1600-0420.2001.790502.x.
|
10. |
Schey KL, Wang Z, L Wenke J, et al. Aquaporins in the eye: expression, function, and roles in ocular disease[J]. Biochim Biophys Acta, 2014, 1840(5): 1513-1523. DOI: 10.1016/j.bbagen.2013.10.037.
|
11. |
Hollborn M, Dukic-Stefanovic S, Pannicke T, et al. Expression of aquaporins in the retina of diabetic rats[J]. Curr Eye Res, 2011, 36(9): 850-856. DOI: 10.3109/02713683.2011.593108.
|
12. |
Suzuki H, Oku H, Horie T, et al. Changes in expression of aquaporin-4 and aquaporin-9 in optic nerve after crushing in rats[J/OL]. PLoS One, 2014, 9(12): e114694[2014-12-05]. https://doi.org/10.1371/journal.pone.0114694. DOI: 10.1371/journal.pone.0114694.
|
13. |
Dal Monte M, Nicchia GP, Cammalleri M, et al. Aquaporin 4 is required to induce retinal angiogenesis in a mouse model of oxygen‐induced retinopathy[J/OL]. Acta Ophthalmologica, 2015, 92: 253[2014-08-20]. https://doi.org/10.1111/j.1755-3768.2014.F006.x. DOI: 10.1111/j.1755-3768.2014.F006.x.
|
14. |
Oku H, Morishita S, Horie T, et al. Nitric oxide increases the expression of aquaporin-4 protein in rat optic nerve astrocytes through the cyclic guanosine monophosphate/protein kinase G pathway[J]. Ophthalmic Res, 2015, 54(4): 212-221. DOI: 10.1159/000440846.
|
15. |
Lassiale S, Valamanesh F, Klein C, et al. Changes in aquaporin-4 and Kir4.1 expression in rats with inherited retinal dystrophy[J]. Exp Eye Res, 2016, 148: 33-44. DOI: 10.1016/j.exer.2016.05.010.
|
16. |
Kida T, Oku H, Horie T, et al. Implication of VEGF and aquaporin 4 mediating Müller cell swelling to diabetic retinal edema[J]. Graefe’s Arch Clin Exp Ophthalmol, 2017, 255(6): 1149-1157. DOI: 10.1007/s00417-017-3631-z.
|
17. |
Nguyen QD, Tatlipinar S, Shah SM, et al. Vascular endothelial growth factor is a critical stimulus for diabetic macular edema[J]. Am J Ophthalmol, 2006, 142(6): 961-969. DOI: 10.1016/j.ajo.2006.06.068.
|
18. |
Le YZ. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases[J]. Vision Res, 2017, 139: 108-114. DOI: 10.1016/j.visres.2017.05.005.
|
19. |
Miyamoto K, Khosrof S, Bursell SE, et al. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1)[J]. Am J Pathol, 2000, 156(5): 1733-1739. DOI: 10.1016/s0002-9440(10)65044-4.
|
20. |
Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition[J]. Proc Natl Acad Sci USA, 1999, 96(19): 10836-10841. DOI: 10.1073/pnas.96.19.10836.
|
21. |
Sohn HJ, Han DH, Kim IT, et al. Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema[J]. Am J Ophthalmol, 2011, 152(4): 686-694. DOI: 10.1016/j.ajo.2011.03.033.
|
22. |
Felinski EA, Antonetti DA. Glucocorticoid regulation of endothelial cell tight junction gene expression: novel treatments for diabetic retinopathy[J]. Curr Eye Res, 2005, 30(11): 949-957. DOI: 10.1080/02713680500263598.
|
23. |
Noma H, Mimura T, Yasuda K, et al. Role of inflammation in diabetic macular edema[J]. Ophthalmologica, 2014, 232(3): 127-135. DOI: 10.1159/000364955.
|
24. |
Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema[J]. Ophthalmology, 2009, 116(1): 73-79. DOI: 10.1016/j.ophtha.2008.09.037.
|
25. |
Jonas JB, Jonas RA, Neumaier M, et al. Cytokine concentration in aqueous humor of eyes with diabetic macular edema[J]. Retina, 2012, 32(10): 2150-2157. DOI: 10.1097/IAE.0b013e3182576d07.
|
26. |
Ferrara N. VEGF and intraocular neovascularization: from discovery to therapy[J/OL]. Transl Vis Sci Technol, 2016, 5(2): 10[2016-04-11]. https://pubmed.ncbi.nlm.nih.gov/26981332/. DOI: 10.1167/tvst.5.2.10.
|
27. |
Mu H, Zhang XM, Liu JJ, et al. Effect of high glucose concentration on VEGF and PEDF expression in cultured retinal Müller cells[J]. Mol Biol Rep, 2009, 36(8): 2147-2151. DOI: 10.1007/s11033-008-9428-8.
|
28. |
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305. DOI: 10.2337/db09-1420.
|
29. |
Simmons AB, Bretz CA, Wang H, et al. Correction to: gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy[J/OL]. Angiogenesis, 2018, 21(4): 765[2018-06-25]. https://pubmed.ncbi.nlm.nih.gov/29943214/. DOI: 10.1007/s10456-018-9626-5.
|
30. |
Fu S, Dong S, Zhu M, et al. VEGF as a trophic factor for Müller glia in hypoxic retinal diseases[J]. Adv Exp Med Biol, 2018, 1074: 473-478. DOI: 10.1007/978-3-319-75402-4_58.
|
31. |
Bressler SB, Qin H, Beck RW, et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab[J]. Arch Ophthalmol, 2012, 130(9): 1153-1161. DOI: 10.1001/archophthalmol.2012.1107.
|
32. |
Barile GR, Pachydaki SI, Tari SR, et al. The RAGE axis in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2005, 46(8): 2916-2924. DOI: 10.1167/iovs.04-1409.
|
33. |
Semeraro F, Morescalchi F, Duse S, et al. Current trends about inner limiting membrane peeling in surgery for epiretinal membranes[J/OL]. J Ophthalmol, 2015, 2015: 671905[2015-09-03]. https://pubmed.ncbi.nlm.nih.gov/26425352/. DOI: 10.1155/2015/671905.
|
34. |
Bonnin S, Sandali O, Bonnel S, et al. Vitrectomy with internal limiting membrane peeling for tractional and nontractional diabetic macular edema: long-term results of a comparative study[J]. Retina, 2015, 35(5): 921-928. DOI: 10.1097/IAE.0000000000000433.
|
35. |
Tenckhoff S, Hollborn M, Kohen L, et al. Diversity of aquaporin mRNA expressed by rat and human retinas[J]. Neuroreport, 2005, 16(1): 53-56. DOI: 10.1097/00001756-200501190-00013.
|
36. |
Hamann S, Zeuthen T, La Cour M, et al. Aquaporins in complex tissues: distribution of aquaporins 1-5 in human and rat eye[J]. Am J Physiol, 1998, 274(5): C1332-C1345. DOI: 10.1152/ajpcell.1998.274.5.C1332.
|