1. |
Muoio V, Persson PB, Sendeski MM. The neurovascular unit-concept review[J]. Acta Physiologica, 2014, 210(4): 790-798. DOI: 10.1111/apha.12250.
|
2. |
Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature[J]. J Cerebr Blood F Met, 2013, 33(11): 1685-1695. DOI: 10.1038/jcbfm.2013.145.
|
3. |
Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter?[J]. Diabetologia, 2018, 61(9): 1902-1912. DOI: 10.1007/s00125-018-4692-1.
|
4. |
van der Wijk A, Vogels IMC, van Veen HA, et al. Spatial and temporal recruitment of the neurovascular unit during development of the mouse blood-retinal barrier[J]. Tissue Cell, 2018, 52: 42-50. DOI: 10.1016/j.tice.2018.03.010.
|
5. |
Biswas S, Cottarelli A, Agalliu D. Neuronal and glial regulation of CNS angiogenesis and barriergenesis[J/OL]. Development, 2020, 147(9): dev182279[2020-05-01]. https://pubmed.ncbi.nlm.nihgov/32358096/. DOI: 10.1242/dev.182279.
|
6. |
Rathnasamy G, Foulds WS, Ling EA, et al. Retinal microglia-a key player in healthy and diseased retina[J]. Prog Neurobiol, 2019, 173: 18-40. DOI: 10.1016/j.pneurobio.2018.05.006.
|
7. |
Jing C, Liu CH, Sapieha P. Retinal vascular development[M]//Stahl A. Anti-angiogenic therapy in ophthalmology. Cham: Springer, 2016: 1-19.
|
8. |
García-Ayuso D, Di Pierdomenico J, Vidal-Sanz M, et al. Retinal ganglion cell death as a late remodeling effect of photoreceptor degeneration[J/OL]. Int J Mol Sci, 2019, 20(18): 4649[2019-09-19]. https://pubmed.ncbi.nlm.nih.gov/31546829/. DOI: 10.3390/ijms20184649.
|
9. |
Telias M, Nawy S, Kramer RH. Degeneration-dependent retinal remodeling: looking for the molecular trigger[J/OL]. Front Neurosci, 2020, 14: 618019[2020-12-18]. https://pubmed.ncbi.nlm.nih.gov/33390897/. DOI: 10.3389/fnins.2020.618019.
|
10. |
Zihni C, Mills C, Matter K, et al. Tight junctions: from simple barriers to multifunctional molecular gates[J]. Nat Rev Mol Cell Biol, 2016, 17(9): 564-580. DOI: 10.1038/nrm.2016.80.
|
11. |
Trost A, Bruckner D, Rivera FJ, et al. Pericytes in the retina[J]. Adv Exp Med Biol, 2019, 1122: 1-26. DOI: 10.1007/978-3-030-11093-2_1.
|
12. |
Newman EA. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1672): 20140195[2015-07-05]. https://pubmed.ncbi.nlm.nih.gov/26009774/. DOI: 10.1098/rstb.2014.0195.
|
13. |
Nakagawa S, Deli MA, Nakao S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells[J]. Cell Mol Neurobiol, 2007, 27(6): 687-694. DOI: 10.1007/s10571-007-9195-4.
|
14. |
Eleftheriou CG, Ivanova E, Sagdullaev BT. Of neurons and pericytes: the neuro-vascular approach to diabetic retinopathy[J/OL]. Visual Neurosci, 2020, 37: E005[2020-08-11]. https://pubmed.ncbi.nlm.nih.gov/32778188/. DOI: 10.1017/S0952523820000048.
|
15. |
Someya E, Akagawa M, Mori A, et al. Role of neuron-glia signaling in regulation of retinal vascular tone in rats[J/OL]. Int J Mol Sci, 2019, 20(8): 1952[2019-04-20]. https://pubmed.ncbi.nlm.nih.gov/31010057/. DOI: 10.3390/ijms20081952.
|
16. |
Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease[J]. Prog Retin Eye Res, 2012, 31(5): 377-406. DOI: 10.1016/j.preteyeres.2012.04.004.
|
17. |
Hein TW, Yuan Z, Rosa RH, et al. Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine[J/OL]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2113[2005-05-01]. https://pubmed.ncbi.nlm.nih.gov/15914631/. DOI: 10.1167/iovs.04-1438.
|
18. |
Biesecker KR, Srienc AI, Shimoda AM, et al. Glial cell calcium signaling mediates capillary regulation of blood flow in the retina[J]. J Neurosci, 2016, 36(36): 9435-9445. DOI: 10.1523/JNEUROSCI.1782-16.
|
19. |
Phipps JA, Dixon MA, Jobling AI, et al. The renin-angiotensin system and the retinal neurovascular unit: a role in vascular regulation and disease[J/OL]. Exp Eye Res, 2019, 187: 107753[2019-08-10]. https://pubmed.ncbi.nlm.nih.gov/31408629/. DOI: 10.1016/j.exer.2019.107753.
|
20. |
Friedrichs P, Schlotterer A, Sticht C, et al. Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model[J]. Diabetologia, 2017, 60(7): 1354-1358. DOI: 10.1007/s00125-017-4254-y.
|
21. |
Lajko M, Cardona HJ, Taylor JM, et al. Hyperoxia-induced proliferative retinopathy: early interruption of retinal vascular development with severe and irreversible neurovascular disruption[J/OL]. PLoS One, 2016, 11(11): e166886[2016-11-18]. https://pubmed.ncbi.nlm.nih.gov/27861592/. DOI: 10.1371/journal.pone.0166886.
|
22. |
Mohamed IN, Ishrat T, Fagan SC, et al. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit[J]. Antioxid Redox Sign, 2015, 22(13): 1188-1206. DOI: 10.1089/ars.2014.6126.
|
23. |
Sinclair SH, Schwartz SS. Diabetic retinopathy-an underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes[J/OL]. Front Endocrinol (Lausanne), 2019, 10: 843[2019-12-13]. https://pubmed.ncbi.nlm.nih.gov/31920963/. DOI: 10.3389/fendo.2019.00843.
|
24. |
García-Ayuso D, Salinas-Navarro M, Agudo M, et al. Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina[J]. Exp Eye Res, 2010, 91(6): 800-810. DOI: 10.1016/j.exer.2010.10.003.
|
25. |
García-Ayuso D, Salinas-Navarro M, Nadal-Nicolás FM, et al. Sectorial loss of retinal ganglion cells in inherited photoreceptor degeneration is due to RGC death[J]. Brit J Ophthalmol, 2014, 98(3): 396-401. DOI: 10.1136/bjophthalmol-2013-303958.
|
26. |
Yang S, Zhang J, Chen L. The cells involved in the pathological process of diabetic retinopathy[J/OL]. Biomed Pharmacother, 2020, 132: 110818[2020-10-11].https://pubmed.ncbi.nlm.nih.gov/33053509/. DOI: 10.1016/j.biopha.2020.110818.
|
27. |
Gastinger MJ, Singh RS, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas[J]. Invest Ophthalmol Vis Sci, 2006, 47(7): 3143-3150. DOI: 10.1167/iovs.05-1376.
|
28. |
Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[J]. Prog Retin Eye Res, 2014, 43: 17-75. DOI: 10.1016/j.preteyeres.2014.07.001.
|
29. |
Gugleta K, Kochkorov A, Waldmann N, et al. Dynamics of retinal vessel response to flicker light in glaucoma patients and ocular hypertensives[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250(4): 589-594. DOI: 10.1007/s00417-011-1842-2.
|
30. |
Wareham LK, Calkins DJ. The neurovascular unit in glaucomatous neurodegeneration[J/OL]. Front Cell Dev Biol, 2020, 8: 452[2020-06-16]. https://pubmed.ncbi.nlm.nih.gov/32656207/. DOI: 10.3389/fcell.2020.00452.
|
31. |
Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma[J/OL]. Prog Retin Eye Res, 2019, 73: 100769[2019-07-10]. https://pubmed.ncbi.nlm.nih.gov/31301400/. DOI: 10.1016/j.preteyeres.2019.07.002.
|
32. |
Kerr NM, Johnson CS, Zhang J, et al. High pressure-induced retinal ischaemia reperfusion causes upregulation of gap junction protein connexin43 prior to retinal ganglion cell loss[J]. Exp Neurol, 2012, 234(1): 144-152. DOI: 10.1016/j.expneurol.2011.12.027.
|
33. |
Handa JT, Bowes Rickman C, Dick AD, et al. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration[J/OL]. Nat Commun, 2019, 10(1): 3347[2019-07-26]. https://pubmed.ncbi.nlm.nih.gov/31350409/. DOI: 10.1038/s41467-019-11262-1.
|
34. |
Burgansky-Eliash Z, Barash H, Nelson D, et al. Retinal blood flow velocity in patients with age-related macular degeneration[J]. Curr Eye Res, 2013, 39(3): 304-311. DOI: 10.3109/02713683.2013.840384.
|
35. |
Lanzl IM, Seidova S, Maier M, et al. Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection[J]. Acta Ophthalmol, 2011, 89(5): 472-479. DOI: 10.1111/j.1755-3768.2009.01718.x.
|
36. |
Hudson N, Cahill M, Campbell M. Inner blood-retina barrier involvement in dry age-related macular degeneration (AMD) pathology[J]. Neural Regen Res, 2020, 15(9): 1656-1657. DOI: 10.4103/1673-5374.276332.
|
37. |
Lim LS, Ling LH, Ong PG, et al. Dynamic responses in retinal vessel caliber with flicker light stimulation and risk of diabetic retinopathy and its progression[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2449-2455. DOI: 10.1167/iovs.16-21008.
|
38. |
Kim SR, Suh W. Beneficial effects of the Src inhibitor, dasatinib, on breakdown of the blood-retinal barrier[J]. Arch Pharm Res, 2017, 40(2): 197-203. DOI: 10.1007/s12272-016-0872-z.
|
39. |
Di Pierdomenico J, Scholz R, Valiente-Soriano FJ, et al. Neuroprotective effects of FGF2 and minocycline in two animal models of inherited retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4392-4403. DOI: 10.1167/iovs.18-24621.
|