1. |
Gui F, You Z, Fu S, et al. Endothelial dysfunction in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2020, 11: 591[2020-09-04]. https://pubmed.ncbi.nlm.nih.gov/33013692/. DOI: 10.3389/fendo.2020.00591.
|
2. |
李辉, 洪亚茹, 刘勃实, 等. 骨形成蛋白4对人视网膜微血管内皮细胞糖酵解水平的影响[J]. 中华眼底病杂志, 2022, 38(10): 840-845. DOI: 10.3760/cma.j.cn511434-20210714-00379.Li H, Hong YR, Liu BS, et al. Effect of bone morphogenetic protein 4 on glycolysis of human retinal vascular endothelial cells[J]. Chin J Ocul Fundus Dis, 2022, 38(10): 840-845. DOI: 10.3760/cma.j.cn511434-20210714-00379.
|
3. |
Breitzig M, Bhimineni C, Lockey R, et al. 4-Hydroxy-2-nonenal: a critical target in oxidative stress?[J]. Am J Physiol Cell Physiol, 2016, 311(4): 537-543. DOI: 10.1152/ajpcell.00101.2016.
|
4. |
Ayalasomayajula SP, Kompella UB. Induction of vascular endothelial growth factor by 4-hydroxynonenal and its prevention by glutathione precursors in retinal pigment epithelial cells[J]. Eur J Pharmacol, 2002, 449(3): 213-220. DOI: 10.1016/s0014-2999(02)02043-5.
|
5. |
Dong L, Nian H, Shao Y, et al. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy[J]. Cell Tissue Res, 2015, 360(2): 233-243. DOI: 10.1007/s00441-014-2104-5.
|
6. |
Xing X, Huang L, Lv Y, et al. DL-3-n-butylphthalide protected retinal Müller cells dysfunction from oxidative stress[J]. Curr Eye Res, 2019, 44(10): 1112-1120. DOI: 10.1080/02713683.2019.1624777.
|
7. |
邢小丽, 黄亮瑜, 张哲, 等. 丁基苯酞对H2O2诱导下视网膜色素上皮细胞凋亡的保护作用[J]. 中华眼底病杂志, 2019, 35(5): 480-487. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.Xing XL, Huang LY, Zhang Z, et al. Effects of butylphthalide on hydrogen peroxide induced retinal pigment epithelial cells injury[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 480-487. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.
|
8. |
梁景黎, 寇振宇, 曹靖靖, 等. 聚嘧啶束结合蛋白相关剪切子高表达对视网膜微血管内皮细胞的影响[J]. 中华眼底病杂志, 2023, 39(4): 324-329. DOI: 10.3760/cma.j.cn511434-20210222-00090.Liang JL, Kou ZY, Cao JJ, et al. Effect of high expression of polypyrimidine tract-binding protein-associated splicing factor on retinal microvascular endothelial cells[J]. Chin J Ocul Fundus Dis, 2023, 39(4): 324-329. DOI: 10.3760/cma.j.cn511434-20210222-00090.
|
9. |
Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes[J]. Free Radic Biol Med, 1991, 11(1): 81-128. DOI: 10.1016/0891-5849(91)90192-6.
|
10. |
Dong L, Zhang Z, Liu X, et al. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy[J]. J Mol Med (Berl), 2021, 99(2): 225-240. DOI: 10.1007/s00109-020-01995-8.
|
11. |
Hongo N, Takamura Y, Nishimaru H, et al. Astaxanthin ameliorated parvalbumin-positive neuron deficits and Alzheimer's disease-related pathological progression in the hippocampus of App(NL-G-F/NL-G-F) mice[J/OL]. Front Pharmacol, 2020, 11: 307[2020-03-11]. https://pubmed.ncbi.nlm.nih.gov/32218736/. DOI: 10.3389/fphar.2020.00307.
|
12. |
Lin CH, Wei PC, Chen CM, et al. Lactulose and melibiose attenuate MPTP-induced Parkinson's disease in mice by inhibition of oxidative stress, reduction of neuroinflammation and up-regulation of autophagy[J/OL]. Front Aging Neurosci, 2020, 12: 226[2020-07-24]. https://pubmed.ncbi.nlm.nih.gov/32848705/. DOI: 10.3389/fnagi.2020.00226.
|
13. |
Cid-Gallegos MS, Sánchez-Chino XM, Álvarez-González I, et al. Modification of in vitro and in vivo antioxidant activity by consumption of cooked chickpea in a colon cancer model[J/OL]. Nutrients, 2020, 12(9): 2572[2020-08-25]. https://pubmed.ncbi.nlm.nih.gov/32854249/. DOI: 10.3390/nu12092572.
|
14. |
Ethen CM, Reilly C, Feng X, et al. Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal[J]. Invest Ophthalmol Vis Sci, 2007, 48(8): 3469-3479. DOI: 10.1167/iovs.06-1058.
|
15. |
Sharma A, Sharma R, Chaudhary P, et al. 4-Hydroxynonenal induces p53-mediated apoptosis in retinal pigment epithelial cells[J]. Arch Biochem Biophys, 2008, 480(2): 85-94. DOI: 10.1016/j.abb.2008.09.016.
|
16. |
Kania E, Pająk B, Orzechowski A. Calcium homeostasis and ER stress in control of autophagy in cancer cells[J/OL]. Biomed Res Int, 2015, 2015: 352794[2015-03-03]. https://pubmed.ncbi.nlm.nih.gov/25821797/. DOI: 10.1155/2015/352794.
|
17. |
Zhang L, Niu Y, Zhu L, et al. Different interaction modes for protein-disulfide isomerase (PDI) as an efficient regulator and a specific substrate of endoplasmic reticulum oxidoreductin-1α (Ero1α)[J]. J Biol Chem, 2014, 289(45): 31188-31199. DOI: 10.1074/jbc.M114.602961.
|
18. |
Ayaub EA, Kolb PS, Mohammed-Ali Z, et al. GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis[J]. J Pathol, 2016, 239(4): 411-425. DOI: 10.1002/path.4738.
|
19. |
Smith M, Wilkinson S. ER homeostasis and autophagy[J]. Essays Biochem, 2017, 61(6): 625-635. DOI: 10.1042/EBC20170092.
|
20. |
Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer[J]. Cell, 2017, 168(4): 692-706. DOI: 10.1016/j.cell.2016.12.004.
|