1. |
Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier[J]. Eur J Ophthalmol, 2011, 21(Suppl 6): S3-9. DOI: 10.5301/EJO.2010.6049.
|
2. |
Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction[J]. Br J Pharmacol, 2017, 174(12): 1591-1619. DOI: 10.1111/bph.13517.
|
3. |
Wang Y, Yan A, Li S, et al. Efficacy and safety of berberine in the treatment of type 2 diabetes with insulin resistance: protocol for a systematic review[J/OL]. Medicine (Baltimore), 2019, 98(35): e16947[2019-09-30]. https://pubmed.ncbi.nlm.nih.gov/31464934/. DOI: 10.1097/MD.0000000000016947.
|
4. |
万强, 杨玉萍, 刘中勇. 黄连素抑制ERK1/2途径减轻大气细颗粒物对EA.hy926内皮细胞损伤的研究[J]. 中药材, 2016, 39(7): 1623-1627. DOI: 10.13863/j.issn1001-4454.2016.07.042.Wan Q, Yang YP, Liu ZY. Study of berberine on attenuating PM2.5-induced vascular endothelial cells injury by ERK1/2 signal pathway[J]. Zhong Yao Cai, 2016, 39(7): 1623-1627. DOI: 10.13863/j.issn1001-4454.2016.07.042.
|
5. |
Chang W, Chen L, Hatch GM. Berberine as a therapy for type 2 diabetes and its complications: from mechanism of action to clinical studies[J]. Biochem Cell Biol, 2015, 93(5): 479-486. DOI: 10.1139/bcb-2014-0107.
|
6. |
Hsu YJ, Lin CW, Cho SL, et al. Protective effect of fenofibrate on oxidative stress-induced apoptosis in retinal-choroidal vascular endothelial cells: implication for diabetic retinopathy treatment[J/OL]. Antioxidants (Basel), 2020, 9(8): 712[2020-08-05]. https://pubmed.ncbi.nlm.nih.gov/32764528/. DOI: 10.3390/antiox9080712.
|
7. |
Wang Y, Huang Y, Lam KS, et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase[J]. Cardiovasc Res, 2009, 82(3): 484-492. DOI: 10.1093/cvr/cvp078.
|
8. |
Ong WY, Go ML, Wang DY, et al. Effects of antimalarial drugs on neuroinflammation-potential use for treatment of COVID-19-related neurologic complications[J]. Mol Neurobiol, 2021, 58(1): 106-117. DOI: 10.1007/s12035-020-02093-z.
|
9. |
Samuels IS, Bell BA, Pereira A, et al. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes[J]. J Neurophysiol, 2015, 113(4): 1085-1099. DOI: 10.1152/jn.00761.2014.
|
10. |
Simó R, Villarroel M, Corraliza L, et al. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy[J/OL]. J Biomed Biotechnol, 2010, 2010: 190724[2010-02-17]. https://pubmed.ncbi.nlm.nih.gov/20182540/. DOI: 10.1155/2010/190724.
|
11. |
Cunha-Vaz J, Bernardes R. Nonproliferative retinopathy in diabetes type 2. Initial stages and characterization of phenotypes[J]. Prog Retin Eye Res, 2005, 24(3): 355-377. DOI: 10.1016/j.preteyeres.2004.07.004.
|
12. |
Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2017, 2017: 9702820[2017-02-06]. https://pubmed.ncbi.nlm.nih.gov/28265339/. DOI: 10.1155/2017/9702820.
|
13. |
Tan JKS, Wei X, Wong PA, et al. Altered red blood cell deformability-a novel hypothesis for retinal microangiopathy in diabetic retinopathy[J/OL]. Microcirculation, 2020, 27(7): e12649[2020-08-11]. https://pubmed.ncbi.nlm.nih.gov/32663357/. DOI: 10.1111/micc.12649.
|
14. |
Sorrentino FS, Matteini S, Bonifazzi C, et al. Diabetic retinopathy and endothelin system: microangiopathy versus endothelial dysfunction[J]. Eye (Lond), 2018, 32(7): 1157-1163. DOI: 10.1038/s41433-018-0032-4.
|
15. |
Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer[J/OL]. Cell Death Dis, 2019, 10(3): 177[2019-02-21]. https://pubmed.ncbi.nlm.nih.gov/30792387/. DOI: 10.1038/s41419-019-1407-6.
|
16. |
Khalilzadeh B, Shadjou N, Kanberoglu GS, et al. Advances in nanomaterial based optical biosensing and bioimaging of apoptosis via caspase-3 activity: a review[J/OL]. Mikrochim Acta, 2018, 185(9): 434[2018-08-29]. https://pubmed.ncbi.nlm.nih.gov/30159750/. DOI: 10.1007/s00604-018-2980-6.
|
17. |
Pazarcı Ö, Aydin H, Kılınç S. Comparison of caspase-8, granzyme B and cytochrome C apoptosis biomarker levels in orthopedic trauma patients[J]. Ulus Travma Acil Cerrahi Derg, 2020, 26(2): 274-279. DOI: 10.14744/tjtes.2019.02680.
|
18. |
Elena-Real CA, Díaz-Quintana A, González-Arzola K, et al. Cytochrome c speeds up caspase cascade activation by blocking 14-3-3epsilon-dependent Apaf-1 inhibition[J/OL]. Cell Death Dis, 2018, 9(3): 365[2018-03-06]. https://pubmed.ncbi.nlm.nih.gov/29511177/. DOI: 10.1038/s41419-018-0408-1.
|