1. |
Coco-Martin RM, Belani-Raju M, de la Fuente-Gomez D, et al. Progression of myopic maculopathy in a Caucasian cohort of highly myopic patients with long follow-up: a multistate analysis[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(1): 81-92. DOI: 10.1007/s00417-020-04795-5.
|
2. |
Bartol-Puyal FA, Isanta C, Ruiz-Moreno Ó, et al. Distribution of choroidal thinning in high myopia, diabetes mellitus, and aging: a swept-source OCT study[J/OL]. J Ophthalmol, 2019, 2019: 3567813[2019-08-15]. https://pubmed.ncbi.nlm.nih.gov/31511788/. DOI: 10.1155/2019/3567813.
|
3. |
Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. DOI: 10.1016/j.preteyeres.2017.11.003.
|
4. |
Bartol-Puyal FA, Isanta C, Calvo P, et al. Relationship between vascular densities of choriocapillaris and the whole choroid using OCTA[J]. Int Ophthalmol, 2020, 40(11): 3135-3143. DOI: 10.1007/s10792-020-01500-7.
|
5. |
Cheung CMG, Arnold JJ, Holz FG, et al. Myopic choroidal neovascularization: review, guidance, and consensus statement on management[J]. Ophthalmology, 2017, 124(11): 1690-1711. DOI: 10.1016/j.ophtha.2017.04.028.
|
6. |
Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing Eye Study[J]. Ophthalmology, 2013, 120(1): 175-180. DOI: 10.1016/j.ophtha.2012.07.048.
|
7. |
Ang M, Wong CW, Hoang QV, et al. Imaging in myopia: potential biomarkers, current challenges and future developments[J]. Br J Ophthalmol, 2019, 103(6): 855-862. DOI: 10.1136/bjophthalmol-2018-312866.
|
8. |
Ruiz-Medrano J, Montero JA, Flores-Moreno I, et al. Myopic maculopathy: current status and proposal for a new classification and grading system (ATN)[J]. Prog Retin Eye Res, 2019, 69: 80-115. DOI: 10.1016/j.preteyeres.2018.10.005.
|
9. |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. DOI: 10.1016/j.ophtha.2016.01.006.
|
10. |
Jonas JB, Panda-Jonas S. Epidemiology and anatomy of myopia[J]. Ophthalmologe, 2019, 116(6): 499-508. DOI: 10.1007/s00347-019-0858-6.
|
11. |
Soomro T, Talks J. The use of optical coherence tomography angiography for detecting choroidal neovascularization, compared to standard multimodal imaging[J]. Eye (Lond), 2018, 32(4): 661-672. DOI: 10.1038/eye.2018.2.
|
12. |
Shao L, Xu L, Wei WB, et al. Visual acuity and subfoveal choroidal thickness: the Beijing Eye Study[J]. Am J Ophthalmol, 2014, 158(4): 702-709. DOI: 10.1016/j.ajo.2014.05.023.
|
13. |
Ye J, Shen M, Huang S, et al. Visual acuity in pathological myopia is correlated with the photoreceptor myoid and ellipsoid zone thickness and affected by choroid thickness[J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1714-1723. DOI: 10.1167/iovs.18-26086.
|
14. |
Mushiga Y, Minami S, Uchida A, et al. Hyperreflective material in optical coherence tomography images of eyes with myopic choroidal neovascularization may affect the visual outcome[J/OL]. J Clin Med, 2020, 9(8): 2394[2020-07-27]. https://pubmed.ncbi.nlm.nih.gov/32727009/. DOI: 10.3390/jcm9082394.
|
15. |
Querques L, Giuffrè C, Corvi F, et al. Optical coherence tomography angiography of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2017, 101(5): 609-615. DOI: 10.1136/bjophthalmol-2016-309162.
|
16. |
Bruyère E, Miere A, Cohen SY, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography[J]. Retina, 2017, 37(11): 2095-2101. DOI: 10.1097/IAE.0000000000001456.
|
17. |
Hu G, Chen Q, Xu X, et al. Morphological characteristics of the optic nerve head and choroidal thickness in high myopia[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 46. DOI: 10.1167/iovs.61.4.46.
|
18. |
Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia[J]. Retina, 1992, 12(2): 127-133. DOI: 10.1097/00006982-199212020-00009.
|
19. |
Biçer Ö, Demirel S, Yavuz Z, et al. Comparison of morphological features of type 1 CNV in AMD and pachychoroid neovasculopathy: an OCTA study[J]. Ophthalmic Surg Lasers Imaging Retina, 2020, 51(11): 640-647. DOI: 10.3928/23258160-20201104-06.
|
20. |
Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1alpha is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J/OL]. EBioMedicine, 2020, 57: 102878[2020-07-08]. https://pubmed.ncbi.nlm.nih.gov/32652319/. DOI: 10.1016/j.ebiom.2020.102878.
|
21. |
邵伊润, 毛剑波, 沈丽君, 等. 高度近视继发脉络膜新生血管和单纯高度近视患眼以及正常眼黄斑区血流参数对比观察[J]. 中华眼底病杂志, 2019, 35(5): 446-450. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.005.Shao YR, Mao JB, Shen LJ, et al. The comparison of macular blood flow parameters in myopic choroidal neovascularization, high myopia and normal people[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 446-450. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.005.
|