1. |
Pavel M, Park SJ, Frake RA, et al. α-Catenin levels determine direction of Yap/Taz response to autophagy perturbation[J/OL]. Nat Commun, 2021, 12(1): 1703[2021-03-17]. https://pubmed.ncbi.nlm.nih.gov/33731717/. DOI: 10.1038/s41467-021-21882-1.
|
2. |
Zhao D, Yin Z, Soellner MB, et al. Scribble sub-cellular localization modulates recruitment of YES1 to regulate YAP1 phosphorylation[J]. Cell Chem Biol, 2021, 28(8): 1235-1241. DOI: 10.1016/j.chembiol.2021.02.019.
|
3. |
Matarrese P, Vona R, Ascione B, et al. Physical interaction between HPV16E7 and the actin-binding protein gelsolin regulates epithelial-mesenchymal transition via HIPPO-Yap axis[J]. Cancers (Basel), 2021, 13(2): 353. DOI: 10.3390/cancers13020353.
|
4. |
Lee M, Goraya N, Kim S, et al. Hippo-yap signaling in ocular development and disease[J]. Dev Dyn, 2018, 247(6): 794-806. DOI: 10.1002/dvdy.24628.
|
5. |
Masson C, García-García D, Bitard J, et al. Yap haploinsufficiency leads to Müller cell dysfunction and late-onset cone dystrophy[J]. Cell Death Dis, 2020, 11(8): 631. DOI: 10.1038/s41419-020-02860-9.
|
6. |
Santos-de-Frutos K, Segrelles C, Lorz C. Hippo pathway and yap signaling alterations in squamous cancer of the head and neck[J/OL]. J Clin Med, 2019, 8(12): 2131[2019-12-03]. https://pubmed.ncbi.nlm.nih.gov/31817001/. DOI: 10.3390/jcm8122131.
|
7. |
Miao J, Kyoyama H, Liu L, et al. Inhibition of cyclin-dependent kinase 7 down-regulates yes-associated protein expression in mesothelioma cells[J]. J Cell Mol Med, 2020, 24(1): 1087-1098. DOI: 10.1111/jcmm.14841.
|
8. |
Bejoy J, Wang Z, Bijonowski B, et al. Differential effects of heparin and hyaluronic acid on neural patterning of human induced pluripotent stem cells[J]. ACS Biomater Sci Eng, 2018, 4(12): 4354-4366. DOI: 10.1021/acsbiomaterials.8b01142.
|
9. |
Kim KH, Chung C, Kim JM, et al. Clinical significance of atypical protein kinase C (PKCι and PKCζ) and its relationship with yes-associated protein in lung adenocarcinoma[J]. BMC Cancer, 2019, 19(1): 804. DOI: 10.1186/s12885-019-5992-7.
|
10. |
Zhang G, Dai S, Chen Y, et al. Aqueous extract of Taxus chinensis var. mairei regulates the Hippo-Yap pathway and promotes apoptosis of non-small cell lung cancer via ATF3 in vivo and in vitro[J/OL]. Biomed Pharmacother, 2021, 138: 111506[2021-06-01]. https://pubmed.ncbi.nlm.nih.gov/33740524/. DOI: 10.1016/j.biopha.2021.111506.
|
11. |
Neal SJ, Zhou Q, Pignoni F. STRIPAK-PP2A regulates Hippo-Yorkie signaling to suppress retinal fate in the Drosophila eye disc peripodial epithelium[J/OL]. J Cell Sci, 2020, 133(10): jcs237834[2020-05-26]. https://pubmed.ncbi.nlm.nih.gov/32184260/. DOI: 10.1242/jcs.237834.
|
12. |
Deng H, Yang L, Wen P, et al. Spectrin couples cell shape, cortical tension, and Hippo signaling in retinal epithelial morphogenesis[J/OL]. J Cell Biol, 2020, 219(4): e201907018[2020-04-06]. https://pubmed.ncbi.nlm.nih.gov/32328630/. DOI: 10.1083/jcb.201907018.
|
13. |
Ehmer U, Sage J. Control of proliferation and cancer growth by the Hippo signaling pathway[J]. Mol Cancer Res, 2016, 14(2): 127-140. DOI: 10.1158/1541-7786.MCR-15-0305.
|
14. |
Moon KH, Kim HT, Lee D, et al. Differential expression of NF2 in neuroepithelial compartments is necessary for mammalian eye development[J]. Dev Cell, 2018, 44(1): 13-28. DOI: 10.1016/j.devcel.2017.11.011.
|
15. |
Miesfeld JB, Link BA. Establishment of transgenic lines to monitor and manipulate Yap/Taz-Tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the Hippo pathway[J]. Mech Dev, 2014, 133: 177-88. DOI: 10.1016/j.mod.2014.02.003.
|
16. |
Alarcon VB, Marikawa Y. ROCK and RHO playlist for preimplantation development: streaming to HIPPO pathway and apicobasal polarity in the first cell differentiation[J]. Adv Anat Embryol Cell Biol, 2018, 229: 47-68. DOI: 10.1007/978-3-319-63187-5_5.
|
17. |
Keller M, Reis K, Hjerpe A, et al. Cytoskeletal organization correlates to motility and invasiveness of malignant mesothelioma cells[J]. Cancers (Basel), 2021, 13(4): 685. DOI: 10.3390/cancers13040685.
|
18. |
Zhang T, Guo S, Zhou H, et al. Endometrial extracellular matrix rigidity and IFNτ ensure the establishment of early pregnancy through activation of Yap[J/OL]. Cell Prolif, 2021, 54(2): e12976[2021-02-04]. https://pubmed.ncbi.nlm.nih.gov/33393124/. DOI: 10.1111/cpr.12976.
|
19. |
Aharonov A, Shakked A, Umansky KB, et al. ERBB2 drives Yap activation and EMT-like processes during cardiac regeneration[J]. Nat Cell Biol, 2020, 22(11): 1346-1356. DOI: 10.1038/s41556-020-00588-4.
|
20. |
Rani PK, Peguda HK, Chandrashekher M, et al. Capacity building for diabetic retinopathy screening by optometrists in India: model description and pilot results[J]. Indian J Ophthalmol, 2021, 69(3): 655-659. DOI: 10.4103/ijo.IJO_1944_20.
|
21. |
Zhang W, Jiang H, Kong Y. Exosomes derived from platelet-rich plasma activate Yap and promote the fibrogenic activity of Müller cells via the PI3K/Akt pathway[J/OL]. Exp Eye Res, 2020, 193: 107973[2020-02-12]. https://pubmed.ncbi.nlm.nih.gov/32059976/. DOI: 10.1016/j.exer.2020.107973.
|
22. |
Zhang W, Kong Y. Yap is essential for TGF-β-induced retinal fibrosis in diabetic rats via promoting the fibrogenic activity of Müller cells[J]. J Cell Mol Med, 2020, 24(21): 12390-12400. DOI: 10.1111/jcmm.15739.
|
23. |
Pan Q, Gao Z, Zhu C, et al. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and Yap/HIF1α/VEGFA depletion[J/OL]. Am J Physiol Endocrinol Metab, 2020, 319(5): E932-943[2020-11-01]. https://pubmed.ncbi.nlm.nih.gov/32776826/. DOI: 10.1152/ajpendo.00051.2020.
|
24. |
Xing W, Song Y, Li H, et al. Fufang Xueshuantong protects retinal vascular endothelial cells from high glucose by targeting Yap[J/OL]. Biomed Pharmacother, 2019, 120: 109470[2019-10-04]. https://pubmed.ncbi.nlm.nih.gov/31590124/. DOI: 10.1016/j.biopha.2019.109470.
|
25. |
Hao GM, Lyv TT, Wu Y, et al. The Hippo signaling pathway: a potential therapeutic target is reversed by a Chinese patent drug in rats with diabetic retinopathy[J]. BMC Complement Altern Med, 2017, 17(1): 187. DOI: 10.1186/s12906-017-1678-3.
|
26. |
Wu D, Kanda A, Liu Y, et al. Involvement of Müller glial autoinduction of TGF-β in diabetic fibrovascular proliferation via glial-mesenchymal transition[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 29. DOI: 10.1167/iovs.61.14.29.
|
27. |
Hamon A, García-García D, Ail D, et al. Linking Yap to Müller glia quiescence exit in the degenerative retina[J]. Cell Rep, 2019, 27(6): 1712-1725. DOI: 10.1016/j.celrep.2019.04.045.
|
28. |
Rueda EM, Hall BM, Hill MC, et al. The Hippo pathway blocks mammalian retinal müller glial cell reprogramming[J]. Cell Rep, 2019, 27(6): 1637-1649. DOI: 10.1016/j.celrep.2019.04.047.
|
29. |
Xue Y, Shen SQ, Jui J, et al. CRALBP supports the mammalian retinal visual cycle and cone vision[J]. J Clin Invest, 2015, 125(2): 727-738. DOI: 10.1172/JCI79651.
|
30. |
Sindal MD, Gondhale HP, Srivastav K. Clinical profile and outcomes of rhegmatogenous retinal detachment related to trauma in pediatric population[J]. Can J Ophthalmol, 2020, 56(4): 231-236. DOI: 10.1016/j.jcjo.2020.12.001.
|
31. |
Qi T, Jing R, Wen C, et al. Interleukin-6 promotes migration and extracellular matrix synthesis in retinal pigment epithelial cells[J]. Histochem Cell Biol, 2020, 154(6): 629-638. DOI: 10.1007/s00418-020-01923-4.
|
32. |
Du Y, Chen Q, Huang L, et al. VEGFR2 and VEGF-C suppresses the epithelial-mesenchymal transition via yap in retinal pigment epithelial cells[J]. Curr Mol Med, 2018, 18(5): 273-286. DOI: 10.2174/1566524018666181004115304.
|
33. |
Davis JT, Wen Q, Janmey PA, et al. Müller cell expression of genes implicated in proliferative vitreoretinopathy is influenced by substrate elastic modulus[J]. Invest Ophthalmol Vis Sci, 2012, 53(6): 3014-3019. DOI: 10.1167/iovs.11-8450.
|
34. |
Chen HC, Zhu YT, Chen SY, et al. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition[J]. Lab Invest, 2012, 92(5): 676-687. DOI: 10.1038/labinvest.2011.201.
|
35. |
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: complex network interactions and impact in epithelial cell behavior[J/OL]. Wiley Interdiscip Rev Dev Biol, 2020, 9(3): e371[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/31828974/. DOI: 10.1002/wdev.371.
|
36. |
Yuan H, Li H, Yu P, et al. Involvement of HDAC6 in ischaemia and reperfusion-induced rat retinal injury[J]. BMC Ophthalmol, 2018, 18(1): 300. DOI: 10.1186/s12886-018-0951-7.
|
37. |
Konishi T, Schuster RM, Lentsch AB. Proliferation of hepatic stellate cells, mediated by YAP and TAZ, contributes to liver repair and regeneration after liver ischemia-reperfusion injury[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(4): 471-482. DOI: 10.1152/ajpgi.00153.2017.
|
38. |
Zhang Q, Cao Y, Liu Y, et al. Shear stress inhibits cardiac microvascular endothelial cells apoptosis to protect against myocardial ischemia reperfusion injury via Yap/miR-206/PDCD4 signaling pathway[J/OL]. Biochem Pharmacol, 2021, 186: 114466[2021-02-18]. https://pubmed.ncbi.nlm.nih.gov/33610591/. DOI: 10.1016/j.bcp.2021.114466.
|
39. |
Li L, Xu L, Chen W, et al. Reduced annexin A1 secretion by ABCA1 causes retinal inflammation and ganglion cell apoptosis in a murine glaucoma model[J]. Front Cell Neurosci, 2018, 12: 347. DOI: 10.3389/fncel.2018.00347.
|
40. |
González Fleitas MF, Aranda ML, Dieguez HH, et al. Pre-ischemic enriched environment increases retinal resilience to acute ischemic damage in adult rats[J]. Exp Eye Res, 2019, 178: 198-211. DOI: 10.1016/j.exer.2018.10.007.
|
41. |
Ha Y, Liu W, Liu H, et al. AAV2-mediated GRP78 transfer alleviates retinal neuronal injury by downregulating ER stress and tau oligomer formation[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4670-4682. DOI: 10.1167/iovs.18-24427.
|
42. |
Moon S, Lee S, Caesar JA, et al. A CTGF-Yap regulatory pathway is essential for angiogenesis and barriergenesis in the retina[J/OL]. iScience, 2020, 23(6): 101184[2020-06-26]. https://pubmed.ncbi.nlm.nih.gov/32502964/. DOI: 10.1016/j.isci.2020.101184.
|
43. |
Brodowska K, Al-Moujahed A, Marmalidou A, et al. The clinically used photosensitizer Verteporfin (VP) inhibits Yap-TEAD and human retinoblastoma cell growth in vitro without light activation[J]. Exp Eye Res, 2014, 124: 67-73. DOI: 10.1016/j.exer.2014.04.011.
|
44. |
Al-Moujahed A, Brodowska K, Stryjewski TP, et al. Verteporfin inhibits growth of human glioma in vitro without light activation[J/OL]. Sci Rep, 2017, 7(1): 7602[2017-08-08]. https://pubmed.ncbi.nlm.nih.gov/28790340/. DOI: 10.1038/s41598-017-07632-8.
|
45. |
Lyubasyuk V, Ouyang H, Yu FX, et al. YAP inhibition blocks uveal melanogenesis driven by GNAQ or GNA11 mutations[J/OL]. Mol Cell Oncol, 2014, 2(1): e970957[2014-12-01]. https://pubmed.ncbi.nlm.nih.gov/27308390/. DOI: 10.4161/23723548.2014.970957.
|
46. |
Tamiya S, Kaplan HJ. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy[J]. Exp Eye Res, 2016, 142: 26-31. DOI: 10.1016/j.exer.2015.02.008.
|