1. |
Hou XR, Miao H, Tao Y, et al. Expression of cytokines on the iris of patients with neovascular glaucoma[J]. Acta Ophthalmol, 2015, 93(2): 100-104. DOI: 10.1111/aos.12510.
|
2. |
Miao H, Hou X, Hwang DK, et al. Vascular endothelial growth factor, basic fibroblast growth factor, and pigment epithelium-derived factor expression in the neovascular iris in retinal diseases[J/OL]. J Ophthalmol, 2018, 2018: 8025951[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29850214/. DOI:10.1155/2018/8025951.
|
3. |
Trzybulska D, Vergadi E, Tsatsanis C. miRNA and other non-coding RNAs as promising diagnostic markers[J]. EJIFCC, 2018, 29(3): 221-226.
|
4. |
Han S, Kong YC, Sun B, et al. microRNA-218 inhibits oxygen-induced retinal neovascularization via reducing the expression of roundabout 1[J]. Chin Med J (Engl), 2016, 129(6): 709-715. DOI: 10.4103/0366-6999.178013.
|
5. |
Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology[J/OL]. Front Genet, 2014, 5: 99[2014-04-23]. https://pubmed.ncbi.nlm.nih.gov/24795757/. DOI: 10.3389/fgene.2014.00099.
|
6. |
张璐, 李妍, 胡竹林. 慢病毒转染在眼科疾病中的应用[J]. 国际眼科纵览, 2018, 42(4): 227-231. DOI: 10.3760/cma.j.issn.1673-5803.2018.04.003.Zhang L, Li Y, Hu ZL. Application of lentiviral transfection in ophthalmic diseases[J]. Int Rev Ophthalmol, 2018, 42(4): 227-231. DOI: 10.3760/cma.j.issn.1673-5803.2018.04.003.
|
7. |
Annabi B, Lee YT, Turcotte S, et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation[J]. Stem Cells, 2003, 21(3): 337-347. DOI: 10.1634/stemcells.21-3-337.
|
8. |
Nebenfuehr S, Kollmann K, Sexl V. The role of CDK6 in cancer[J]. Int J Cancer, 2020, 147(11): 2988-2995. DOI: 10.1002/ijc.33054.
|
9. |
Mansilla SF, de la Vega MB, Calzetta NL, et al. CDK-Independent and PCNA-dependent functions of p21 in DNA replication[J]. Genes (Basel), 2020, 11(6): 593. DOI: 10.3390/genes11060593.
|
10. |
Lim S, Kaldis P. CDKs, Cyclins and CKIs: roles beyond cell cycle regulation[J]. Development, 2013, 140(15): 3079-3093. DOI: 10.1242/dev.091744.
|
11. |
Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, et al. Genome-wide miRNA analysis identifies miR-188-3p as a novel prognostic marker and molecular factor involved in colorectal carcinogenesis[J]. Clin Cancer Res, 2017, 23(5): 1323-1333. DOI: 10.1158/1078-0432.CCR-16-0497.
|
12. |
Yan R, Yang T, Zhai H, et al. MicroRNA-150-5p affects cell proliferation, apoptosis, and EMT by regulation of the BRAF(V600E) mutation in papillary thyroid cancer cells[J]. J Cell Biochem, 2018, 119(11): 8763-8772. DOI: 10.1002/jcb.27108.
|
13. |
Wang XH, Chen L. MicroRNA-370 suppresses the retinal capillary endothelial cell growth by targeting KDR gene[J]. Bratisl Lek Listy, 2017, 118(4): 202-207. DOI: 10.4149/BLL_2017_040.
|
14. |
Diao Y, Jin B, Huang L, et al. MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2[J]. J Cell Mol Med, 2018, 22(4): 2357-2367. DOI: 10.1111/jcmm.13529.
|
15. |
Wang YF, Yang HY, Shi XQ, et al. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer[J]. Cancer Biol Ther, 2018, 19(12): 1162-1173. DOI: 10.1080/15384047.2018.1491497.
|
16. |
Tian F, Yu C, Wu M, et al. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis[J/OL]. Cell Prolif, 2019, 52(5): e12635[2019-07-13]. https://pubmed.ncbi.nlm.nih.gov/31334580/. DOI: 10.1111/cpr.12635.
|
17. |
Gu Y, Ampofo E, Menger MD, et al. miR-191 suppresses angiogenesis by activation of NF-κB signaling[J]. FASEB J, 2017, 31(8): 3321-3333. DOI: 10.1096/fj.201601263R.
|
18. |
Lena AM, Mancini M, Rivetti di Val Cervo P, et al. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation[J]. Biochem Biophys Res Commun, 2012, 423(3): 509-514. DOI: 10.1016/j.bbrc.2012.05.153.
|
19. |
Colamaio M, Borbone E, Russo L, et al. miR-191 down-regulation plays a role in thyroid follicular tumors through CDK6 targeting[J/OL]. J Clin Endocrinol Metab, 2011, 96(12): E1915-1924[2011-09-28]. https://pubmed.ncbi.nlm.nih.gov/21956418/. DOI: 10.1210/jc.2011-0408.
|
20. |
Di Leva G, Piovan C, Gasparini P, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status[J/OL]. PLoS Genet, 2013, 9(3): e1003311[2013-03-07]. https://pubmed.ncbi.nlm.nih.gov/23505378/. DOI: 10.1371/journal.pgen.1003311.
|
21. |
Kim JH, Lee BJ, Kim JH, et al. Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21(WAF1) expression[J]. Eur J Pharmacol, 2009, 615(1-3): 150-154. DOI: 10.1016/j.ejphar.2009.05.015.
|
22. |
Han J, Li N. Adenoviral vector-mediated delivery of p21WAF1/CIP1 prevents retinal neovascularization in an oxygen-induced retinopathy model[J]. Curr Eye Res, 2016, 41(8): 1113-1117. DOI: 10.3109/02713683.2015.1090002.
|