1. |
Ip M, Hendrick A. Retinal vein occlusion review[J]. Asia Pac J Ophthalmol (Phila), 2018, 7(1): 40-45. DOI: 10.22608/APO.2017442.
|
2. |
Freund KB, Korobelnik JF, Devenyi R, et al. Treat-and-extend regimens with anti-VEGF agents in retinal diseases: a literature review and consensus recommendations[J]. Retina, 2015, 35(8): 1489-1506. DOI: 10.1097/IAE.0000000000000627.
|
3. |
Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the management of retinal vein occlusion by the European Society of Retina Specialists (EURETINA)[J]. Ophthalmologica, 2019, 242(3): 123-162. DOI: 10.1159/000502041.
|
4. |
Chen X, Hu TM, Zuo J, et al. Intravitreal conbercept for branch retinal vein occlusion induced macular edema: one initial injection versus three monthly injections[J/OL]. BMC Ophthalmol, 2020, 20(1): 225[2020-06-11]. https://pubmed.ncbi.nlm.nih.gov/32527234/. DOI: 10.1186/s12886-020-01494-x.
|
5. |
Liu W, Li Y, Cao R, et al. A systematic review and meta-analysis to compare the efficacy of conbercept with ranibizumab in patients with macular edema secondary to retinal vein occlusion[J/OL]. Medicine (Baltimore), 2020, 99(21): e20222[2020-05-22]. https://pubmed.ncbi.nlm.nih.gov/32481293/. DOI: 10.1097/MD.0000000000020222.
|
6. |
Xia JP, Wang S, Zhang JS. The anti-inflammatory and anti-oxidative effects of conbercept in treatment of macular edema secondary to retinal vein occlusion[J]. Biochem Biophys Res Commun, 2019, 508(4): 1264-1270. DOI: 10.1016/j.bbrc.2018.12.049.
|
7. |
Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[J]. Prog Retin Eye Res, 2017, 60: 66-100. DOI: 10.1016/j.preteyeres.2017.07.002.
|
8. |
Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. DOI: 10.1016/j.preteyeres.2017.11.003.
|
9. |
Chen L, Yuan M, Sun L, et al. Evaluation of microvascular network with optical coherence tomography angiography (OCTA) in branch retinal vein occlusion (BRVO)[J/OL]. BMC Ophthalmol, 2020, 20(1): 154[2020-04-19]. https://pubmed.ncbi.nlm.nih.gov/32306978/. DOI: 10.1186/s12886-020-01405-0.
|
10. |
Deng Y, Cai X, Zhang S, et al. Quantitative analysis of retinal microvascular changes after conbercept therapy in branch retinal vein occlusion using optical coherence tomography angiography[J]. Ophthalmologica, 2019, 242(2): 69-80. DOI: 10.1159/000499608.
|
11. |
Abri Aghdam K, Reznicek L, Soltan Sanjari M, et al. Anti-VEGF treatment and peripheral retinal nonperfusion in patients with central retinal vein occlusion[J]. Clin Ophthalmol, 2017, 11: 331-336. DOI: 10.2147/OPTH.S125486.
|
12. |
Ou WC, Lampen SIR, Wykoff CC. Longitudinal quantification of retinal nonperfusion in the macula of eyes with retinal vein occlusion receiving anti-VEGF therapy: secondary analysis of the WAVE randomized trial[J]. Ophthalmic Surg Lasers Imaging Retina, 2018, 49(4): 258-264. DOI: 10.3928/23258160-20180329-08.
|
13. |
Sakimoto S, Gomi F, Sakaguchi H, et al. Analysis of retinal nonperfusion using depth-integrated optical coherence tomography images in eyes with branch retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2015, 56(1): 640-646. DOI: 10.1167/iovs.14-15673.
|
14. |
Deng Y, Zhong QW, Zhang AQ, et al. Microvascular changes after conbercept therapy in central retinal vein occlusion analyzed by optical coherence tomography angiography[J]. Int J Ophthalmol, 2019, 12(5): 802-808. DOI: 10.18240/ijo.2019.05.16.
|
15. |
Ghasemi Falavarjani K, Iafe NA, Hubschman JP, et al. Optical coherence tomography angiography analysis of the foveal avascular zone and macular vessel density after anti-VEGF therapy in eyes with diabetic macular edema and retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 30-34. DOI: 10.1167/iovs.16-20579.
|
16. |
Sellam A, Glacet-Bernard A, Coscas F, et al. Qualitative and quantittive follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF: optical coherence tomography angiography follow-up of retinal vein occlusion[J]. Retina, 2017, 37(6): 1176-1184. DOI: 10.1097/IAE.0000000000001334.
|
17. |
Ciloglu E, Dogan NÇ. Optical coherence tomography angiography findings in patients with branch retinal vein occlusion treated with anti-VEGF[J]. Arq Bras Oftalmol, 2020, 83(2): 120-126. DOI: 10.5935/0004-2749.20200017.
|
18. |
Winegarner A, Wakabayashi T, Fukushima Y, et al. Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2708-2716. DOI: 10.1167/iovs.17-23437.
|
19. |
Song S, Yu X, Zhang P, et al. Changes in macular microvascular structure in macular edema secondary to branch retinal vein occlusion treated with antivascular endothelial growth factor for one year[J/OL]. J Ophthalmol, 2021, 2021: 6645452[2021-05-17]. https://pubmed.ncbi.nlm.nih.gov/34055397/. DOI: 10.1155/2021/6645452.
|
20. |
Freund KB, Sarraf D, Leong BCS, et al. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex[J]. JAMA Ophthalmol, 2018, 136(11): 1262-1270. DOI: 10.1001/jamaophthalmol.2018.3586.
|
21. |
Campochiaro PA, Bhisitkul RB, Shapiro H, et al. Vascular endothelial growth factor promotes progressive retinal nonperfusion in patients with retinal vein occlusion[J]. Ophthalmology, 2013, 120(4): 795-802. DOI: 10.1016/j.ophtha.2012.09.032.
|
22. |
Chui TY, VanNasdale DA, Elsner AE, et al. The association between the foveal avascular zone and retinal thickness[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6870-6877. DOI: 10.1167/iovs.14-15446.
|
23. |
de Oliveira BMR, Nakayama LF, de Godoy BR, et al. Reliability of foveal avascular zone measurements in eyes with retinal vein occlusion using optical coherence tomography angiography[J/OL]. Int J Retina Vitreous, 2020, 6: 35[2020-08-03]. https://pubmed.ncbi.nlm.nih.gov/32774887/. DOI: 10.1186/s40942-020-00237-w.
|
24. |
Samara WA, Shahlaee A, Sridhar J, et al. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion[J]. Am J Ophthalmol, 2016, 166: 76-83. DOI: 10.1016/j.ajo.2016.03.033.
|
25. |
Sophie R, Hafiz G, Scott AW, et al. Long-term outcomes in ranibizumab-treated patients with retinal vein occlusion; the role of progression of retinal nonperfusion[J]. Am J Ophthalmol, 2013, 156(4): 693-705. DOI: 10.1016/j.ajo.2013.05.039.
|
26. |
Krawitz BD, Mo S, Geyman LS, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography[J]. Vision Res, 2017, 139: 177-186. DOI: 10.1016/j.visres.2016.09.019.
|
27. |
Fan L, Zhu Y, Liao R. Evaluation of macular microvasculature and foveal avascular zone in patients with retinal vein occlusion using optical coherence tomography angiography[J/OL]. Int Ophthalmol, 2021, 2021: E1[2021-08-22]. https://doi.org/10.1007/s10792-021-02015-5. DOI: 10.1007/s10792-021-02015-5. [published online ahead of print].
|