1. |
Matuszewski W, Baranowska-Jurkun A, Stefanowicz-Rutkowska MM, et al. The safety of pharmacological and surgical treatment of diabetes in patients with diabetic retinopathy-a review[J]. J Clin Med, 2021, 10(4): 705. DOI: 10.3390/jcm10040705.
|
2. |
Nicolini G, Forini F, Kusmic C, et al. Angiopoietin 2 signal complexity in cardiovascular disease and cancer[J/OL]. Life Sci, 2019, 239: 117080[2019-12-15]. https://pubmed.ncbi.nlm.nih.gov/31756341/. DOI: 10.1016/j.lfs.2019.117080.
|
3. |
Campochiaro PA, Peters KG. Targeting Tie2 for treatment of diabetic tetinopathy and diabetic macular edema[J]. Curr Diab Rep, 2016, 16(12): 126. DOI: 10.1007/s11892-016-0816-5.
|
4. |
Morelli MB, Chavez C, Santulli G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: focus on lipid disorders[J]. Expert Opin Ther Targets, 2020, 24(1): 79-88. DOI: 10.1080/14728222.2020.1707806.
|
5. |
Ehrlich KC, Lacey M, Ehrlich M. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes[J]. Epigenomics, 2019, 11(2): 169-186. DOI: 10.2217/epi-2018-0150.
|
6. |
Bini S, D'Erasmo L, Di Costanzo A, et al. The interplay between angiopoietin-like proteins and adipose tissue: another piece of the relationship between adiposopathy and cardiometabolic diseases?[J]. Int J Mol Sci, 2021, 22(2): 742. DOI: 10.3390/ijms22020742.
|
7. |
Nguyen QD, Heier JS, Do DV, et al. The Tie2 signaling pathway in retinal vascular diseases: a novel therapeutic target in the eye[J]. Int J Retina Vitreous, 2020, 6: 48. DOI: 10.1186/s40942-020-00250-z.
|
8. |
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway[J]. Nat Rev Drug Discov, 2017, 16(9): 635-661. DOI: 10.1038/nrd.2016.278.
|
9. |
Joussen AM, Ricci F, Paris LP, et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data[J]. Eye (Lond), 2021, 35(5): 1305-1316. DOI: 10.1038/s41433-020-01377-x.
|
10. |
Tee JK, Setyawati MI, Peng F, et al. Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticleinduced leakiness[J]. Nanotoxicology, 2019, 13(5): 682-700. DOI: 10.1080/17435390.2019.1571646.
|
11. |
Yun JH, Han MH, Jeong HS, et al. Angiopoietin 1 attenuates interleukin-6-induced endothelial cell permeability through SHP-1[J]. Biochem Biophys Res Commun, 2019, 518(2): 286-293. DOI: 10.1016/j.bbrc.2019.08.048.
|
12. |
Cheema MR, DaCosta J, Talks J, et al. Ten-year real-world outcomes of anti-vascular endothelial growth factor therapy in neovascular age-related macular degeneration[J]. Clin Ophthalmol, 2021, 15: 279-287. DOI: 10.2147/OPTH.S269162.
|
13. |
Lee J, Park DY, Park DY, et al. Angiopoietin-1 suppresses choroidal neovascularization and vascular leakage[J]. Invest Ophthalmol Vis Sci, 2014, 55(4): 2191-2199. DOI: 10.1167/iovs.14-13897.
|
14. |
Rochfort KD, Carroll LS, Barabas P, et al. COMP-ang1 stabilizes hyperglycemic disruption of blood-retinal barrier phenotype in human retinal microvascular endothelial cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3547-3555. DOI: 10.1167/iovs.19-27644.
|
15. |
Cahoon JM, Rai RR, Carroll LS, et al. Intravitreal AAV2. COMP-ang1 prevents neurovascular degeneration in a murine model of diabetic retinopathy[J]. Diabetes, 2015, 64(12): 4247-4259. DOI: 10.2337/db14-1030.
|
16. |
Park SW, Yun JH, Kim JH, et al. Angiopoietin 2 induces pericyte apoptosis via Alpha3beta1 integrin signaling in diabetic retinopathy[J]. Diabetes, 2014, 63(9): 3057-3068. DOI: 10.2337/db13-1942.
|
17. |
Menden H, Welak S, Cossette S, et al. Lipopolysaccharide (LPS)-mediated angiopoietin-2-dependent autocrine angiogenesis is regulated by nadph oxidase 2 (Nox2) in human pulmonary microvascular endothelial cells[J]. J Biol Chem, 2015, 290(9): 5449-5461. DOI: 10.1074/jbc.M114.600692.
|
18. |
Whitehead M, Osborne A, Widdowson PS, et al. Angiopoietins in diabetic retinopathy: current understanding and therapeutic potential[J/OL]. Diabetes Res, 2019, 2019: 5140521[2019-08-14]. https://pubmed.ncbi.nlm.nih.gov/31485452/. DOI: 10.1155/2019/5140521.
|
19. |
Park DY, Lee J, Kim J, et al. Plastic roles of pericytes in the blood-retinal barrier[J/OL]. Nat Commun, 2017, 8: 15296[2017-05-16]. https://pubmed.ncbi.nlm.nih.gov/28508859/. DOI: 10.1038/ncomms15296.
|
20. |
Chatterjee A, Eshwaran R, Huang H, et al. Role of the Ang2-Tie2 axis in vascular damage driven by high glucose or nucleoside diphosphate kinase B deficiency[J/OL]. Int J Mol Sci, 2020, 21(10): 3713[2020-05-25]. https://pubmed.ncbi.nlm.nih.gov/32466219/. DOI: 10.3390/ijms21103713.
|
21. |
Khalaf N, Helmy H, Labib H, et al. Role of Angiopoietins and Tie-2 in diabetic retinopathy[J]. Electron Physician, 2017, 9(8): 5031-5035. DOI: 10.19082/5031.
|
22. |
Keles A, Sonmez K, Erol YO, et al. Vitreous levels of vascular endothelial growth factor, stromal cell-derived factor-1α, and angiopoietin-like protein 2 in patients with active proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(1): 53-60. DOI: 10.1007/s00417-020-04889-0.
|
23. |
Yin R, Zhang N, Zhang D, et al. Higher levels of circulating ANGPTL2 are associated with macular edema in patients with type 2 diabetes[J/OL]. Medicine (Baltimore), 2021, 100(6): e24638[2021-02-12]. https://pubmed.ncbi.nlm.nih.gov/33578584/. DOI: 10.1097/MD.0000000000024638.
|
24. |
Hussain RM, Neiweem AE, Kansara V, et al. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease[J]. Expert Opin Investig Drugs, 2019, 28(10): 861-869. DOI: 10.1080/13543784.2019.1667333.
|
25. |
邵彦, 李筱荣. 从能量代谢角度看糖尿病相关眼病的诊疗[J]. 中华实验眼科杂志, 2020, 38(9): 729-732. DOI: 10.3760/cma.j.cn115989-20200527-00377.Shao Y, Li XR. A metabolic perspective in diabetic ocular disease[J]. Chin J Exp Ophthalmol, 2020, 38(9): 729-732. DOI: 10.3760/cma.j.cn115989-20200527-00377.
|
26. |
Jin N, Matter WF, Michael LF, et al. The Angiopoietin-like protein 3 and 8 complex interacts with lipoprotein lipase and induces LPL cleavage[J]. ACS Chem Biol, 2021, 16(3): 457-462. DOI: 10.1021/acschembio.0c00954.
|
27. |
Gunn KH, Gutgsell AR, Xu Y, et al. Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities[J/OL]. Biol Chem, 2021, 296: 100312[2021-01-20]. https://pubmed.ncbi.nlm.nih.gov/33482195/. DOI: 10.1016/j.jbc.2021.100312.
|
28. |
Gomez Perdiguero E, Liabotis-Fontugne A, Durand M, et al. ANGPTL4-αvβ3 interaction counteracts hypoxia-induced vascular permeability by modulating Src signalling downstream of vascular endothelial growth factor receptor 2[J]. J Pathol, 2016, 240(4): 461-471. DOI: 10.1002/path.4805.
|
29. |
Yu CG, Yuan SS, Yang LY, et al. Angiopoietin-like 3 is a potential biomarker for retinopathy in type 2 diabetic patients[J]. Am J Ophthalmol, 2018, 191: 34-41. DOI: 10.1016/j.ajo.2018.03.040.
|
30. |
Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia[J]. Eur Heart J, 2020, 41(40): 3936-3945. DOI: 10.1093/eurheartj/ehaa689.
|
31. |
Yang LY, Yu CG, Wang XH, et al. Angiopoietin-like protein 4 is a high-density lipoprotein (HDL) component for HDL metabolism and function in nondiabetic participants and type-2 diabetic patients[J/OL]. Am Heart Assoc, 2017, 6(6): e005973[2017-06-23]. https://pubmed.ncbi.nlm.nih.gov/28645936/. DOI: 10.1161/JAHA.117.005973.
|
32. |
Leth-Espensen KZ, Kristensen KK, Kumari A, et al. The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed[J/OL]. Proc Natl Acad Sci USA, 2021, 118(12): e2026650118[2021-03-23]. https://pubmed.ncbi.nlm.nih.gov/33723082/. DOI: 10.1073/pnas.2026650118.
|
33. |
Barchetta I, Chiappetta C, Ceccarelli V, et al. Angiopoietin-like protein 4 overexpression in visceral adipose tissue from obese subjects with impaired glucose metabolism and relationship with lipoprotein lipase[J/OL]. Int J Mol Sci, 2020, 21(19): 7197[2020-09-29]. https://pubmed.ncbi.nlm.nih.gov/33003532/. DOI: 10.3390/ijms21197197.
|
34. |
Babapoor-Farrokhran S, Jee K, Puchner B, et al. Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy[J/OL]. Proc Natl Acad Sci USA, 2015, 112(23): E3030-3039[2015-06-09]. https://pubmed.ncbi.nlm.nih.gov/26039997/. DOI: 10.1073/pnas.1423765112.
|
35. |
Lu Q, Zou W, Chen B, et al. ANGPTL-4 correlates with vascular endothelial growth factor in patients with proliferative diabetic retinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(7): 1281-1288. DOI: 10.1007/s00417-015-3187-8.
|
36. |
Yang X, Cao J, Du Y, et al. Angiopoietin-like protein 4 (ANGPTL4) induces retinal pigment epithelial barrier breakdown by activating signal transducer and activator of transcription 3 (STAT3): evidence from ARPE-19 cells under hypoxic condition and diabetic rats[J]. Med Sci Monit, 2019, 25: 6742-6754. DOI: 10.12659/MSM.915748.
|
37. |
Surma S, Romańczyk M, Filipiak KJ. Angiopoietin-like proteins inhibitors: new horizons in the treatment of atherogenic dyslipidemia and familial hypercholesterolemia[J]. Cardiol J, 2021, 2021: E1(2021-07-07)[2021-01-20]. https://pubmed.ncbi.nlm.nih.gov/33470417/. DOI: 10.5603/CJ.a2021.0006. [published online ahead of print].
|
38. |
Siddiqa A, Cirillo E, Tareen SHK, et al. Visualizing the regulatory role of angiopoietin-like protein 8 (ANGPTL8) in glucose and lipid metabolic pathways[J]. Genomics, 2017, 109(5-6): 408-418. DOI: 10.1016/j.ygeno.2017.06.006.
|
39. |
Dong CX, Song CP, Zhang CP, et al. Clinical and experimental study on angiopoietin-like protein 8 associated with proliferative diabetic retinopathy[J]. Int J Ophthalmol, 2017, 10(12): 1819-1823. DOI: 10.18240/ijo.2017.12.05.
|
40. |
Lightbourne M, Wolska A, Abel BS, et al. Apolipoprotein CⅢ and Angiopoietin-like protein 8 are elevated in lipodystrophy and decrease after metreleptin[J/OL]. J Endocr Soc, 2021, 5: bvaa191[2020-12-04]. https://pubmed.ncbi.nlm.nih.gov/33442570/. DOI: 10.1210/jendso/bvaa191.
|
41. |
Chalke SD, Kale PP. Combination approaches targeting neurodegeneration, oxidative stress and inflammation in the treatment of diabetic retinopathy[J]. Curr Drug Targets, 2021, 22(16): 1810-1824. DOI: 10.2174/1389450122666210319113136.
|
42. |
Holekamp NM, Campbell J, Almony A, et al. Vision outcomes following antievascular endothelial growth factor treatment of diabetic macular edema in clinical practice[J]. Am J Ophthalmol, 2018, 191: 83-91. DOI: 10.1016/j.ajo.2018.04.010.
|
43. |
Foxton RH, Uhles S, Grüner S, et al. Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization[J/OL]. EMBO Mol Med, 2019, 11(5): e10204[2019-05-01]. https://pubmed.ncbi.nlm.nih.gov/31040126/. DOI: 10.15252/emmm.201810204.
|
44. |
Mirando AC, Shen J, Silva RLE, et al. A collagen Ⅳ-derived peptide disrupts alpha5beta1 integrin and potentiates Ang2/Tie2 signaling[J/OL]. JCI Insight, 2019, 4(4): e122043[2019-02-21]. https://pubmed.ncbi.nlm.nih.gov/30668550/. DOI: 10.1172/jci.insight.122043.
|
45. |
Silva RLE, Kanan Y, Mirando AC, et al. Tyrosine kinase blocking collagen Ⅳ-derived peptide suppresses ocular neovascularization and vascular leakage[J/OL]. Sci Transl Med, 2017, 9(373): eaai8030[2017-01-18]. https://pubmed.ncbi.nlm.nih.gov/28100839/. DOI: 10.1126/scitranslmed.aai8030.
|
46. |
Gahn GM, Khanani AM. New therapies of neovascular amd beyond anti-vegf injections[J]. Vision (Basel), 2018, 2(1): 15. DOI: 10.3390/vision2010015.
|
47. |
Sahni J, Dugel PU, Patel SS, et al. Safety and efficacy of different doses and regimens of faricimab vs ranibizumab in neovascular age-related macular degeneration: The AVENUE Phase 2 Randomized Clinical Trial[J]. JAMA Ophthalmol, 2020, 138(9): 955-963. DOI: 10.1001/jamaophthalmol.2020.2685.
|
48. |
Khanani AM, Patel SS, Ferrone PJ, et al. Efficacy of every four monthly and quarterly dosing of Faricimab vs Ranibizumab in neovascular age-related macular degeneration: The STAIRWAY Phase 2 Randomized Clinical Trial[J]. JAMA Ophthalmol, 2020, 138(9): 964-972. DOI: 10.1001/jamaophthalmol.2020.2699.
|
49. |
Muñoz-Ramón PV, Hernández Martínez P, Muñoz-Negrete FJ. New therapeutic targets in the treatment of age-related macular degeneration[J]. Arch Soc Esp Oftalmol (Engl Ed), 2020, 95(2): 75-83. DOI: 10.1016/j.oftal.2019.09.011.
|
50. |
Sharma A, Kumar N, Parachuri N, et al. Faricimab phase 3 DME trial significance of personalized treatment intervals (PTI) regime for future DME trials[J]. Eye (Lond), 2022, 36(4): 679-680. DOI: 10.1038/s41433-021-01831-4.
|