1. |
Bruen D, Delaney C, Florea L, et al. Glucose sensing for diabetes monitoring: recent developments[J/OL]. Sensors (Basel), 2017, 17(8): 1866[2017-08-12]. https://pubmed.ncbi.nlm.nih.gov/28805693/. DOI: 10.3390/s17081866.
|
2. |
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564. DOI: 10.2337/dc11-1909.
|
3. |
Shukla UV, Tripathy K. Diabetic Retinopathy[M]//StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK560805/.
|
4. |
Martins TGDS. Diabetic retinopathy: a neuropathy[J/OL]. Einstein (Sao Paulo), 2020, 19: ED6110[2020-12-21]. https://pubmed.ncbi.nlm.nih.gov/33338194/. DOI: 10.31744/einstein_journal/2021ED6110.
|
5. |
Rao H, Jalali JA, Johnston TP, et al. Emerging roles of dyslipidemia and hyperglycemia in diabetic retinopathy: molecular mechanisms and clinical perspectives[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 620045[2021-03-22]. https://pubmed.ncbi.nlm.nih.gov/33828528/. DOI: 10.3389/fendo.2021.620045.
|
6. |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
|
7. |
Tdcactr G. The relationship of glycemic exposure (HbAlc) to the risk of development and progression of retinopathy in the diabetes control and complications trial[J]. Diabetes, 1995, 44(8): 968-983.
|
8. |
Long M, Wang C, Liu D. Glycated hemoglobin A1C and vitamin D and their association with diabetic retinopathy severity[J/OL]. Nutr Diabetes, 2017, 7(6): e281[2017-06-12]. https://pubmed.ncbi.nlm.nih.gov/28604686/. DOI: 10.1038/nutd.2017.30.
|
9. |
Zhang B, Zhang BJ, Zhou Z, et al. The value of glycosylated hemoglobin in the diagnosis of diabetic retinopathy: a systematic review and meta-analysis[J]. BMC Endocr Disord, 2021, 21(1): 82. DOI: 10.1186/s12902-021-00737-2.
|
10. |
Shepard JG, Airee A, Dake AW, et al. Limitations of A1c interpretation[J]. South Med J, 2015, 108(12): 724-729. DOI: 10.14423/SMJ.0000000000000381.
|
11. |
Beck RW, Riddlesworth TD, Ruedy K, et al. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial[J]. Ann Intern Med, 2017, 167(6): 365-374. DOI: 10.7326/M16-2855.
|
12. |
Yoo HJ, An HG, Park SY, et al. Use of a real time continuous glucose monitoring system as a motivational device for poorly controlled type 2 diabetes[J]. Diabetes Res Clin Pract, 2008, 82(1): 73-79. DOI: 10.1016/j.diabres.2008.06.015.
|
13. |
Bosi E, Gregori G, Cruciani C, et al. The use of flash glucose monitoring significantly improves glycemic control in type 2 diabetes managed with basal bolus insulin therapy compared to self-monitoring of blood glucose: a prospective observational cohort study[J/OL]. Diabetes Res Clin Pract, 2021: 109172[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34883185/. DOI: 10.1016/j.diabres.2021.109172.
|
14. |
Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12): 1631-1640. DOI: 10.2337/dc17-1600.
|
15. |
Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes[J]. Diabetes Care, 2018, 41(11): 2370-2376. DOI: 10.2337/dc18-1131.
|
16. |
Lu J, Home PD, Zhou J. Comparison of multiple cut points for time in range in relation to risk of abnormal carotid intima-media thickness and diabetic retinopathy[J/OL]. Diabetes Care, 2020, 43(8): e99-e101[2020-06-11]. https://pubmed.ncbi.nlm.nih.gov/32527796/. DOI: 10.2337/dc20-0561.
|
17. |
Sheng X, Xiong GH, Yu PF, et al. The correlation between time in range and diabetic microvascular complications utilizing information management platform[J/OL]. Int J Endocrinol, 2020, 2020: 8879085[2020-12-15]. https://pubmed.ncbi.nlm.nih.gov/33381172/. DOI: 10.1155/2020/8879085.
|
18. |
Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7): 539-553. DOI: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.
|
19. |
Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682. DOI: 10.1016/S0161-6420(03)00475-5.
|
20. |
中国医师协会营养医师专业委员会, 中华医学会糖尿病学分会. 中国糖尿病医学营养治疗指南(2013)[J]. 中华糖尿病杂志, 2015, 2(7): 73-88. DOI: 10.3760/cma.j.issn.1674-5809.2015.02.004.Nutritional Physician Professional Committee of Chinese Medical Doctor Association, Diabetes Branch of Chinese Medical Association. Chinese diabetes medical nutritional therapy guidelines (2013)[J]. Chin J Diabetes Mellitus, 2015, 2(7): 73-88. DOI: 10.3760/cma.j.issn.1674-5809.2015.02.004.
|
21. |
Massin P, Lange C, Tichet J, et al. Hemoglobin A1c and fasting plasma glucose levels as predictors of retinopathy at 10 years: the French DESIR study[J]. Arch Ophthalmol, 2011, 129(2): 188-195. DOI: 10.1001/archophthalmol.2010.353.
|
22. |
Hu J, Hsu H, Yuan X, et al. HbA1c variability as an independent predictor of diabetes retinopathy in patients with type 2 diabetes[J]. J Endocrinol Invest, 2021, 44(6): 1229-1236. DOI: 10.1007/s40618-020-01410-6.
|
23. |
Shiferaw WS, Akalu TY, Desta M, et al. Glycated hemoglobin A1C level and the risk of diabetic retinopathy in Africa: a systematic review and meta-analysis[J]. Diabetes Metab Syndr, 2020, 14(6): 1941-1949. DOI: 10.1016/j.dsx.2020.10.003.
|
24. |
Maa AY, Sullivan BR. Relationship of hemoglobin A1C with the presence and severity of retinopathy upon initial screening of type Ⅱ diabetes mellitus[J]. Am J Ophthalmol, 2007, 144(3): 456-457. DOI: 10.1016/j.ajo.2007.04.008.
|
25. |
Cox DJ, Kovatchev BP, Julian DM, et al. Frequency of severe hypoglycemia in insulin-dependent diabetes mellitus can be predicted from self-monitoring blood glucose data[J]. J Clin Endocrinol Metab, 1994, 79(6): 1659-1662. DOI: 10.1210/jcem.79.6.7989471.
|
26. |
Qu Y, Jacober SJ, Zhang Q, et al. Rate of hypoglycemia in insulin-treated patients with type 2 diabetes can be pedicted from glycemic variability data[J]. Diabetes Technol Ther, 2012, 14(11): 1008-1012. DOI: 10.1089/dia.2012.0099.
|
27. |
Battelino T, Danne T, Bergenstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range[J]. Diabetes care, 2019, 42(8): 1593-1603. DOI: 10.2337/dci19-0028.
|
28. |
Lu J, Ma X, Zhang L, et al. Glycemic variability modifies the relationship between time in range and hemoglobin A1c estimated from continuous glucose monitoring: a preliminary study[J/OL]. Diabetes Res Clin Pract, 2020, 161: 108032[2020-01-30]. https://pubmed.ncbi.nlm.nih.gov/32006646/. DOI: 10.1016/j.diabres.2020.108032.
|
29. |
Beck RW, Bergenstal RM, Cheng P, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c[J]. J Diabetes Sci Technol, 2019, 13(4): 614-626. DOI: 10.1177/1932296818822496.
|
30. |
Fabris C, Heinemann L, Beck R, et al. Estimation of hemoglobin A1c from continuous glucose monitoring data in individuals with type 1 diabetes: is time in range all we need?[J]. Diabetes Technol Ther, 2020, 22(7): 501-508. DOI: 10.1089/dia.2020.0236.
|
31. |
惠延年. 精确评估和控制糖尿病视网膜病变的进展[J]. 中华眼底病杂志, 2021, 37(1): 1-4. DOI: 10.3760/cma.j.cn511434-20201224-00634.Hui YN. Accurate assessment and control of the progression of diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2021, 37(1): 1-4. DOI: 10.3760/cma.j.cn511434-20201224-00634.
|
32. |
Riddlesworth TD, Beck RW, Gal RL, et al. Optimal sampling duration for continuous glucose monitoring to determine long-term glycemic control[J]. Diabetes Technol Ther, 2018, 20(4): 314-316. DOI: 10.1089/dia.2017.0455.
|