1. |
Valk BI, Struys MMRF. Etomidate and its analogs: a review of pharmacokinetics and pharmacodynamics[J]. Clin Pharmacokinet, 2021, 60(10): 1253-1269. DOI: 10.1007/s40262-021-01038-6.
|
2. |
Watson JC, Drummond JC, Patel PM, et al. An assessment of the cerebral protective effects of etomidate in a model of incomplete forebrain ischemia in the rat[J]. Neurosurgery, 1992, 30(4): 540-544. DOI: 10.1227/00006123-199204000-00011.
|
3. |
Lee J, Kim D, Hong H, et al. Protective effect of etomidate on kainic acid-induced neurotoxicity in rat hippocampus[J]. Neurosci Lett, 2000, 286(3): 179-182. DOI: 10.1016/s0304-3940(00)01118-6.
|
4. |
Cayli SR, Ates O, Karadag N, et al. Neuroprotective effect of etomidate on functional recovery in experimental spinal cord injury[J]. Int J Dev Neurosci, 2006, 24(4): 233-239. DOI: 10.1016/j.ijdevneu.2006.04.003.
|
5. |
Xu ZX, Wu MM, Jiao XY, et al. Neuroprotective effect of etcmidate on axotomized retinal ganglion cells in adult rats[J]. Int Eye Sci, 2007, 7(4): 941-944. DOI: 10.3969/j.issn.1672-5123.2007.04.016.
|
6. |
Zhao X, Kuang F, You YY, et al. Etomidate affects the anti-oxidant pathway to protect retinal ganglion cells after optic nerve transection[J]. Neural Regen Res, 2019, 14(11): 2020-2024. DOI: 10.4103/1673-5374.259627.
|
7. |
Ates O, Yucel N, Cayli SR, et al. Neuroprotective effect of etomidate in the central nervous system of streptozotocin-induced diabetic rats[J]. Neurochem Res, 2006, 31(6): 777-783. DOI: 10.1007/s11064-006-9076-0.
|
8. |
Li R, Fan L, Ma F, et al. Effect of etomidate on the oxidative stress response and levels of inflammatory factors from ischemia-reperfusion injury after tibial fracture surgery[J]. Exp Ther Med, 2017, 13(3): 971-975. DOI: 10.3892/etm.2017.4037.
|
9. |
Xie D, Li M, Yu K, et al. Etomidate alleviates cardiac dysfunction, fibrosis and oxidative stress in rats with myocardial ischemic reperfusion injury[J]. Ann Transl Med, 2020, 8(18): 1181. DOI: 10.21037/atm-20-6015.
|
10. |
Jia L, Hao H, Wang C, et al. Etomidate attenuates hyperoxia-induced acute lung injury in mice by modulating the Nrf2/HO-1 signaling pathway[J]. Exp Ther Med, 2021, 22(1): 785. DOI: 10.3892/etm.2021.10217.
|
11. |
Barnstable CJ, Drager UC. Thy-1 antigen: a ganglion cell specific marker in rodent retina[J]. Neuroscience, 1984, 11(4): 847-855. DOI: 10.1016/0306-4522(84)90195-7.
|
12. |
Taschenberger H, Grantyn R. Several types of Ca2+ channels mediate glutamatergic synaptic responses to activation of single Thy-1-immunolabeled rat retinal ganglion neurons[J]. J Neurosci, 1995, 15(3 Pt 2): 2240-2254. DOI:10.1523/JNEUROSCI.15-03-02240.1995.
|
13. |
Chung RS, Adlard PA, Dittmann J, et al. Neuron-glia communication: metallothionein expression is specifically up-regulated by astrocytes in response to neuronal injury[J]. J Neurochem, 2004, 88(2): 454-461. DOI: 10.1046/j.1471-4159.2003.02193.x.
|
14. |
Kilic E, Weishaupt JH, Kilic U, et al. The superoxide dismutase1 (SOD1) G93A mutation does not promote neuronal injury after focal brain ischemia and optic nerve transection in mice[J]. Neuroscience, 2004, 128(2): 359-364. DOI: 10.1016/j.neuroscience.2004.06.064.
|
15. |
Wang T, Cong R, Yang H, et al. Neutralization of BDNF attenuates the in vitro protective effects of olfactory ensheathing cell-conditioned medium on scratch-insulted retinal ganglion cells[J]. Cell Mol Neurobiol, 2011, 31(3): 357-364. DOI: 10.1007/s10571-010-9626-5.
|
16. |
Daniels S, Roberts RJ. Post-synaptic inhibitory mechanisms of anaesthesia; glycine receptors[J]. Toxicol Lett, 1998, 100-101: 71-76. DOI: 10.1016/s0378-4274(98)00167-2.
|