1. |
Baig AM, Ahmad S, Khaleeq A, et al. Ocular COVID-19: eyes as a reservoir to conceal and spread SARSCoV-2[J]. Infect Disord Drug Targets, 2021, 21(4): 480-483. DOI: 10.2174/1871526520999200729182242.
|
2. |
Cheema M, Aghazadeh H, Nazarali S, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19)[J]. Can J Ophthalmol, 2020, 55(4): e125-e129. DOI: 10.1016/j.jcjo.2020.03.003.
|
3. |
Guo D, Xia J, Wang Y, et al. Relapsing viral keratoconjunctivitis in COVID-19: a case report[J]. Virol J, 2020, 17(1): 97. DOI: 10.1186/s12985-020-01370-6.
|
4. |
Chen L, Liu M, Zhang Z, et al. Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease[J]. Br J Ophthalmol, 2020, 104(6): 748-751. DOI: 10.1136/bjophthalmol-2020-316304.
|
5. |
Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei province, China[J]. JAMA Ophthalmology, 2020, 138(5): 575-578. DOI: 10.1001/jamaophthalmol.2020.1291.
|
6. |
Fawzi AA, Pappuru RR, Sarraf D, et al. Acute macular neuroretinopathy: long-term insights revealed by multimodal imaging[J]. Retina, 2012, 32(8): 1500-1513. DOI: 10.1097/IAE.0b013e318263d0c3.
|
7. |
Liu L, Cai D, Huang X, et al. COVID-2019 associated with acquired monocular blindness[J]. Curr Eye Res, 2021, 46(8): 1247-1250. DOI: 10.1080/02713683.2021.1874027.
|
8. |
Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection[J]. Eye (Lond), 2020, 34(12): 2352-2353. DOI: 10.1038/s41433-020-1069-8.
|
9. |
Marinho PM, Marcos AAA, Romano AC, et al. Retinal findings in patients with COVID-19[J]. Lancet, 2020, 395(10237): 1610. DOI: 10.1016/S0140-6736(20)31014-X.
|
10. |
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3): 181-192. DOI: 10.1038/s41579-018-0118-9.
|
11. |
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18): 1708-1720. DOI: 10.1056/NEJMoa2002032.
|
12. |
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor[J]. Nature, 2013, 503(7477): 535-538. DOI: 10.1038/nature12711.
|
13. |
Roehrich H, Yuan C, Hou JH. Immunohistochemical Study of SARS-CoV-2 viral entry factors in the cornea and ocular surface[J]. Cornea, 2020, 39(12): 1556-1562. DOI: 10.1097/ICO.0000000000002509.
|
14. |
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses[J]. Nat Microbiol, 2020, 5(4): 562-569. DOI: 10.1038/s41564-020-0688-y.
|
15. |
孙琰, 潘欣, 柳林, 等. SARS-CoV S蛋白功能性受体ACE2在人、兔角膜、结膜中的表达[J]. 眼科新进展, 2004, 5(24): 332-336. DOI: 10.3969/j.issn.1003-5141.2004.05.002.Su Y, Pan X, Liu L. et al. Expression of SARS coronavirus S protein functional receptor ACE2 in human and rabbit cornea and conjunctiva[J]. Rec Adv Ophthalmol, 2004, 5(24): 332-336. DOI: 10.3969/j.issn.1003-5141.2004.05.002.
|
16. |
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury[J]. Nat Med, 2005, 11(8): 875-879. DOI: 10.1038/nm1267.
|
17. |
张碧凝, 王群, 刘廷, 等. 疫情防控专题: 新型冠状病毒相关蛋白ACE2和TMPRSS2在眼部组织表达的实验研究[J]. 中华眼科杂志, 2020, 6(56): 438-446. DOI: 10.3760/cma.j.cn112142-20200310-00170.Zhang BN, Wang Q, Liu T, et al. A special on epidemic prevention and control: analysis on expression of 2019-nCoV related ACE2 and TMPRSS2 in eye tissues[J]. Chin J Ophthalmol, 2020, 6(56): 438-446. DOI: 10.3760/cma.j.cn112142-20200310-00170.
|
18. |
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485): 1444-1448. DOI: 10.1126/science.abb2762.
|
19. |
Dimitrov DS. The secret life of ACE2 as a receptor for the SARS virus[J]. Cell, 2003, 115(6): 652-653. DOI: 10.1016/s0092-8674(03)00976-0.
|
20. |
Buchrieser J, Dufloo J, Hubert M, et al. Syncytia formation by SARS-CoV-2-infected cells[J/OL]. E, 2020, 39(23): 106267[2020-12-01]. https://europepmc.org/article/MED/33051876. DOI: 10.15252/embj.2020106267.
|
21. |
Ortiz-Egea J, Ruiz-Medrano J, Ruiz-Moreno J. Retinal imaging study diagnoses in COVID-19: a case report[J]. J Med Case Rep, 2021, 15(1): 15. DOI: 10.1186/s13256-020-02620-5.
|
22. |
张燕, 彭绍民. 血-视网膜外屏障发育的研究现状[J]. 中华眼底病杂志, 2012, 2(28): 206-208. DOI: 10.3760/cma.j.issn.1005-1015.2012.02.037.Zhang Y, Peng SM. Current status of research on the development of the blood-retinal outer barrier[J]. Chin J Ocul Fundus Dis, 2012, 2(28): 206-208. DOI: 10.3760/cma.j.issn.1005-1015.2012.02.037.
|
23. |
Hamashima K, Gautam P, Lau KA, et al. Potential modes of COVID-19 transmission from human eye revealed by single-cell atlas[J/OL]. BioRxiv, 2020, 2020: 085613[2020-05-01]. https://www.nature.com/articles/s41467-021-25968-8.pdf. DOI: 10.1101/2020.05.09.085613.
|
24. |
de Figueiredo CS, Raony Í, Giestal-de-Araujo E. SARS-CoV-2 targeting the retina: host-virus interaction and possible mechanisms of viral tropism[J]. Ocul Immunol Inflamm, 2020, 28(8): 1301-1304. DOI: 10.1080/09273948.2020.1799037.
|
25. |
Providência J, Fonseca C, Henriques F, et al. Serpiginous choroiditis presenting after SARS-CoV-2 infection: a new immunological trigger?[J]. Eur J Ophthalmol, 2020, 32(1): NP97-NP101. DOI: 10.1177/1120672120977817.
|
26. |
Abrishami M, Emamverdian Z, Shoeibi N, et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: a case-control study[J]. Can J Ophthalmol, 2021, 56(1): 24-30. DOI: 10.1016/j.jcjo.2020.11.006.
|
27. |
VAvvas DG, Sarraf D, Sadda SR, et al. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication[J]. Eye (Lond), 2020, 34(12): 2153-2154. DOI: 10.1038/s41433-020-1084-9.
|
28. |
Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis[J]. Clin Chim Acta, 2020, 507: 167-173. DOI: 10.1016/j.cca.2020.04.027.
|
29. |
聂玉红, 邓江云, 刘思玲, 等. HSV-1感染对人视网膜色素上皮细胞生长的影响[J]. 眼科学报, 2007, 23(4): 212-218. DOI: 10.3969/j.issn.1000-4432.2007.04.004.Nie YH, Deng JY, Liu SL, et al. Effects of HSV-1 on the growth of human retinal pigment epithelial cell[J]. Eye Science, 2007, 23(4): 212-218. DOI: 10.3969/j.issn.1000-4432.2007.04.004.
|
30. |
Mo J, Zhang M, Marshall B, et al. Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells[J]. Mol Vis, 2014, 20: 1161-1173.
|
31. |
Xu J, Mo J, Liu X, et al. Depletion of the receptor-interacting protein kinase 3 (RIP3) decreases photoreceptor cell death during the early stages of ocular murine cytomegalovirus infection[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2445-2458. DOI: 10.1167/iovs.18-24086.
|