1. |
Xu L, Wang Y, Wang S, et al. High myopia and glaucoma susceptibility the Beijing Eye Study[J]. Ophthalmology, 2007, 114(2): 216-220. DOI: 10.1016/j.ophtha.2006.06.050.
|
2. |
Marcus MW, de Vries MM, Junoy Montolio FG, et al. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis[J]. Ophthalmology, 2011, 118(10): 1989-1994. DOI: 10.101z6/j.ophtha.2011.03.012.
|
3. |
项勇刚, 夏凌云, 张勇, 等. 中国人近视与原发性开角型青光眼相关性的meta分析[J]. 临床眼科杂志, 2014, 3(3): 259-262. DOI: 10.3969/j.issn.1006-8422.2014.03.024.Xiang YG, Xia LY, Zhang Y, et al. Meta-analysis of association between myopia and primary open angle glaucoma[J]. J Clin Ophthalmol, 2014, 3(3): 259-262. DOI: 10.3969/j.issn.1006-8422.2014.03.024.
|
4. |
Mayama C, Suzuki Y, Araie M, et al. Myopia and advanced-stage open-angle glaucoma[J]. Ophthalmology, 2002, 109(11): 2072-2077. DOI: 10.1016/s0161-6420(02)01175-2.
|
5. |
Shin HY, Park HY, Park CK. The effect of myopic optic disc tilt on measurement of spectral-domain optical coherence tomography parameters[J]. Br J Ophthalmol, 2015, 99(1): 69-74. DOI: 10.1136/bjophthalmol-2014-305259.
|
6. |
辛晨, 汪军, 刘广峰, 等. 增强成像技术光学相干断层扫描在在体脉络膜结构研究中的应用[J]. 眼科新进展, 2013, 33(6): 592-596. DOI: 10.13389/j.cnki.rao.2013.06.029.Xin C, Wang J, Liu GF, et al. Application of enhanced depth imaging-technique optical coherence tomography instudy of choroidal structure in vivo[J]. Rec Adv Ophthalmol, 2013, 33(6): 592-596. DOI: 10.13389/j.cnki.rao.2013.06.029.
|
7. |
Chien JL, Ghassibi MP, Mahadeshwar P, et al. A novel method for assessing lamina cribrosa structure ex vivo using anterior segment enhanced depth imaging optical coherence tomography[J]. J Glaucoma, 2017, 26(7): 626-632. DOI: 10.1097/IJG.0000000000000685.
|
8. |
乔春艳, 张慧, 曹凯, 等. 我国原发性青光眼诊断和治疗专家共识遵循情况的调查[J]. 中华眼科医学杂志(电子版), 2019, 9(4): 199-205. DOI: 10.3877/cma.j.issn.2095-2007.2019.04.002.Qiao CY, Zhang H, Cao K, et al. A survey on the compliance ofthe expert consensus in the diagnosis and treatment of primary glaucoma in China[J]. Chin J Ophthalmol Med (Electronic Edition), 2019, 9(4): 199-205. DOI: 10.3877/cma.j.issn.2095-2007.2019.04.002.
|
9. |
Centor RM, Schwartz JS. An evaluation of methods for estimating the area under the receiver operating characteristic (ROC) curve[J]. Med Decis Making, 1985, 5(2): 149-156. DOI: 10.1177/0272989X8500500204.
|
10. |
Jeng-Miller KW, Cestari DM, Gaier ED. Congenital anomalies of the optic disc: insights from optical coherence tomography imaging[J]. Curr Opin Ophthalmol, 2017, 28(6): 579-586. DOI: 10.1097/ICU.0000000000000425.
|
11. |
Chiang J, Yapp M, Ly A, et al. Retinal nerve fiber layer potrusion associated with tilted optic discs[J]. Optom Vis Sci, 2018, 95(3): 239-246. DOI: 10.1097/OPX.0000000000001179.
|
12. |
Miki A, Ikuno Y, Asai T, et al. Defects of the lamina cribrosa in high myopia and glaucoma[J/OL]. PLoS One, 2015, 10(9): e0137909[2015-09-14]. https://pubmed.ncbi.nlm.nih.gov/26366870/. DOI: 10.1371/journal.pone.0137909.
|
13. |
Chen LW, Lan YW, Hsieh JW. The optic nerve head in primary open-angle glaucoma eyes with high myopia: characteristics and association with visual field defects[J/OL]. J Glaucoma, 2016, 25(6): e569-575[2016-06-01]. https://pubmed.ncbi.nlm.nih.gov/26918912/. DOI: 10.1097/IJG.0000000000000395.
|
14. |
Witmer MT, Margo CE, Drucker M. Tilted optic disks[J]. Surv Ophthalmol, 2010, 55(5): 403-428. DOI: 10.1016/j.survophthal.2010.01.002.
|
15. |
Cho HK, Kee C. Comparison of rate of change between Bruch's membrane opening minimum rim width and retinal nerve fiber layer in eyes showing optic disc hemorrhage[J]. Am J Ophthalmol, 2020, 217: 27-37. DOI: 10.1016/j.ajo.2020.03.051.
|
16. |
Malik R, Belliveau AC, Sharpe GP, et al. Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes[J]. Ophthalmology, 2016, 123(6): 1181-1189. DOI: 10.1016/j.ophtha.2016.01.052.
|
17. |
Nagaoka N, Jonas JB, Morohoshi K, et al. Glaucomatous-type optic discs in high myopia[J/OL]. PLoS One, 2015, 10(10): e0138825[2015-10-01]. https://pubmed.ncbi.nlm.nih.gov/26425846/. DOI: 10.1371/journal.pone.0138825.
|
18. |
Alasil T, Wang K, Yu F, et al. Correlation of retinal nerve fiber layer thickness and visual fields in glaucoma: a broken stick model[J]. Am J Ophthalmol, 2014, 157(5): 953-959. DOI: 10.1016/j.ajo.2014.01.014.
|
19. |
Jonas JB, Xu L, Wei WB, et al. Retinal thickness and axial length[J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 1791-1797. DOI: 10.1167/iovs.15-18529.
|
20. |
Lopes FS, Matsubara I, Almeida I, et al. Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study[J]. BMC Ophthalmol, 2019, 19(1): 52. DOI: 10.1186/s12886-019-1054-9.
|
21. |
Jonas JB, Wang NL, Wang YX, et al. Estimated trans-lamina cribrosa pressure difference versus intraocular pressure as biomarker for open-angle glaucoma. The Beijing Eye Study 2011[J/OL]. Acta Ophthalmol, 2015, 93(1): e7-13[2015-02-01]. https://pubmed.ncbi.nlm.nih.gov/24961652/. DOI: 10.1111/aos.12480.
|
22. |
Hartman R, Patil P, Tisherman R, et al. Age-dependent changes in intervertebral disc cell mitochondria and bioenergetics[J]. Eur Cell Mater, 2018, 36: 171-183. DOI: 10.22203/eCM.v036a13.
|
23. |
Tatham AJ, Miki A, Weinreb RN, et al. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss[J]. Ophthalmology, 2014, 121(1): 110-118. DOI: 10.1016/j.ophtha.2013.08.018.
|
24. |
Yang B, Jan NJ, Brazile B, et al. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues[J/OL]. J Biophotonics, 2018, 11(8): e201700356[2018-08-01]. https://pubmed.ncbi.nlm.nih.gov/29633576/. DOI: 10.1002/jbio.201700356.
|
25. |
Agoumi Y, Sharpe GP, Hutchison DM, et al. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls[J]. Ophthalmology, 2011, 118(1): 52-59. DOI: 10.1016/j.ophtha.2010.05.016.
|