1. |
Arneth B, Arneth R, Shams M. Metabolomics of type 1 and type 2 diabetes[J]. Int J Mol Sci, 2019, 20(10): 2467. DOI: 10.3390/ijms20102467.
|
2. |
Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J]. Nat Rev Dis Primers, 2016, 2: 16012. DOI: 10.1038/nrdp.2016.12.
|
3. |
Funatsu H, Yamashita H, Noma H, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients[J]. Graefe’s Arch Clin Exp Ophthalmol, 2005, 243(1): 3-8. DOI: 10.1007/s00417-004-0950-7.
|
4. |
Liew G, Lei Z, Tan G, et al. Metabolomics of diabetic retinopathy[J]. Curr Diab Rep, 2017, 17(11): 102. DOI: 10.1007/s11892-017-0939-3.
|
5. |
Lu J, Lam SM, Wan Q, et al. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic chinese adults[J]. Diabetes Care, 2019, 42(11): 2117-2126. DOI: 10.2337/dc19-0100.
|
6. |
Razquin C, Toledo E, Clish CB, et al. Plasma lipidomic profiling and risk of type 2 diabetes in the predimed trial[J]. Diabetes Care, 2018, 41(12): 2617-2624. DOI: 10.2337/dc18-0840.
|
7. |
Niewczas MA, Mathew AV, Croall S, et al. Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease[J]. Diabetes Care, 2017, 40(3): 383-390. DOI: 10.2337/dc16-0173.
|
8. |
Tamhane M, Cabrera-Ghayouri S, Abelian G, et al. Review of biomarkers in ocular matrices: challenges and opportunities[J]. Pharm Res, 2019, 36(3): 40. DOI: 10.1007/s11095-019-2569-8.
|
9. |
Dunn WB, Broadhurst DI, Atherton HJ, et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Chem Soc Rev, 2011, 40(1): 387-426. DOI: 10.1039/b906712b.
|
10. |
Filla LA, Edwards JL. Metabolomics in diabetic complications[J]. Mol Biosyst, 2016, 12(4): 1090-1105. DOI: 10.1039/c6mb00014b.
|
11. |
Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D608-D617. DOI: 10.1093/nar/gkx1089.
|
12. |
Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects [J/OL]. Adv Sci (Weinh), 2020, 7(22): 2001714[2020-10-01]. https://europepmc.org/article/MED/33240754. DOI: 10.1002/advs.202001714.
|
13. |
Chen L, Cheng CY, Choi H, et al. Plasma metabonomic profiling of diabetic retinopathy[J]. Diabetes, 2016, 65(4): 1099-1108. DOI: 10.2337/db15-0661.
|
14. |
Barba I, Garcia-Ramírez M, Hernández C, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor[J]. Invest Ophthalmol Vis Sci, 2010, 51(9): 4416-4421. DOI: 10.1167/iovs.10-5348.
|
15. |
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. Faseb J, 2004, 18(12): 1450-1452. DOI: 10.1096/fj.03-1476fje.
|
16. |
Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient [J/OL]. Exp Diabetes Res, 2007, 2007: 61038[2007-01-01]. https://europepmc.org/article/MED/18224243. DOI: 10.1155/2007/61038.
|
17. |
Jin H, Zhu B, Liu X, et al. Metabolic characterization of diabetic retinopathy: an (1)H-NMR-based metabolomic approach using human aqueous humor[J]. J Pharm Biomed Anal, 2019, 174: 414-421. DOI: 10.1016/j.jpba.2019.06.013.
|
18. |
Gladden LB. Lactate metabolism: a new paradigm for the third millennium [J]. J Physiol, 2004, 558(Pt 1): 5-30. DOI: 10.1113/jphysiol.2003.058701.
|
19. |
Trudeau K, Molina AJ, Roy S. High glucose induces mitochondrial morphology and metabolic changes in retinal pericytes[J]. Invest Ophthalmol Vis Sci, 2011, 52(12): 8657-8664. DOI: 10.1167/iovs.11-7934.
|
20. |
Matsumoto M, Suzuma K, Maki T, et al. Succinate increases in the vitreous fluid of patients with active proliferative diabetic retinopathy[J]. Am J Ophthalmol, 2012, 153(5): 896-902. DOI: 10.1016/j.ajo.2011.10.006.
|
21. |
Yun JH, Kim JM, Jeon HJ, et al. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients [J/OL]. PLoS One, 2020, 15(10): e0241365[2020-10-29]. https://europepmc.org/article/MED/33119699. DOI: 10.1371/journal.pone.0241365.
|
22. |
Curovic VR, Suvitaival T, Mattila I, et al. Circulating metabolites and lipids are associated to diabetic retinopathy in individuals with type 1 diabetes[J]. Diabetes, 2020, 69(10): 2217-2226. DOI: 10.2337/db20-0104.
|
23. |
Mitchell SL, Uppal K, Williamson SM, et al. The carnitine shuttle pathway is altered in patients with neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4978-4985. DOI: 10.1167/iovs.18-25137.
|
24. |
Sumarriva K, Uppal K, Ma C, et al. Arginine and carnitine metabolites are altered in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3119-3126. DOI: 10.1167/iovs.19-27321.
|
25. |
Poorabbas A, Fallah F, Bagdadchi J, et al. Determination of free L-carnitine levels in type Ⅱ diabetic women with and without complications[J]. Eur J Clin Nutr, 2007, 61(7): 892-895. DOI: 10.1038/sj.ejcn.1602594.
|
26. |
Tamamoğullari N, Siliğ Y, Içağasioğlu S, et al. Carnitine deficiency in diabetes mellitus complications[J]. J Diabetes Complications, 1999, 13(5-6): 251-253. DOI: 10.1016/s1056-8727(99)00052-5.
|
27. |
Liepinsh E, Skapare E, Vavers E, et al. High L-carnitine concentrations do not prevent late diabetic complications in type 1 and 2 diabetic patients[J]. Nutr Res, 2012, 32(5): 320-327. DOI: 10.1016/j.nutres.2012.03.010.
|
28. |
Paris LP, Johnson CH, Aguilar E, et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy[J]. Metabolomics, 2016, 12: 15. DOI: 10.1007/s11306-015-0877-5.
|
29. |
Sas KM, Lin J, Rajendiran TM, et al. Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model[J]. J Lipid Res, 2018, 59(2): 173-183. DOI: 10.1194/jlr.M077222.
|
30. |
Tikhonenko M, Lydic TA, Wang Y, et al. Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4[J]. Diabetes, 2010, 59(1): 219-227. DOI: 10.2337/db09-0728.
|
31. |
Peters KS, Rivera E, Warden C, et al. Plasma arginine and citrulline are elevated in diabetic retinopathy[J]. Am J Ophthalmol, 2021, 235: 154-162. DOI: 10.1016/j.ajo.2021.09.021.
|
32. |
Lin HT, Cheng ML, Lo CJ, et al. 1H nuclear magnetic resonance (NMR)-based cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy[J]. J Clin Med, 2019, 8(6): 874. DOI: 10.3390/jcm8060874.
|
33. |
Narayanan SP, Rojas M, Suwanpradid J, et al. Arginase in retinopathy[J]. Prog Retin Eye Res, 2013, 36: 260-280. DOI: 10.1016/j.preteyeres.2013.06.002.
|
34. |
Haines NR, Manoharan N, Olson JL, et al. Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment[J]. J Proteome Res, 2018, 17(7): 2421-2427. DOI: 10.1021/acs.jproteome.8b00169.
|
35. |
Nyengaard JR, Ido Y, Kilo C, et al. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy[J]. Diabetes, 2004, 53(11): 2931-2938. DOI: 10.2337/diabetes.53.11.2931.
|
36. |
Zhu SS, Ren Y, Zhang M, et al. Wld(S) protects against peripheral neuropathy and retinopathy in an experimental model of diabetes in mice[J]. Diabetologia, 2011, 54(9): 2440-2450. DOI: 10.1007/s00125-011-2226-1.
|
37. |
Böger RH, Bode-Böger SM. Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases[J]. Semin Thromb Hemost, 2000, 26(5): 539-545. DOI: 10.1055/s-2000-13210.
|
38. |
Sydow K, Münzel T. ADMA and oxidative stress[J]. Atheroscler Suppl, 2003, 4(4): 41-51. DOI: 10.1016/s1567-5688(03)00033-3.
|
39. |
Landaas S. The formation of 2-hydroxybutyric acid in experimental animals[J]. Clin Chim Acta, 1975, 58(1): 23-32. DOI: 10.1016/0009-8981(75)90481-7.
|
40. |
Ola MS, Alhomida AS, LaNoue KF. Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina[J]. Neurotox Res, 2019, 36(1): 81-90. DOI: 10.1007/s12640-019-00018-w.
|
41. |
Kowluru RA, Engerman RL, Case GL, et al. Retinal glutamate in diabetes and effect of antioxidants[J]. Neurochem Int, 2001, 38(5): 385-390. DOI: 10.1016/s0197-0186(00)00112-1.
|
42. |
Patel C, Rojas M, Narayanan SP, et al. Arginase as a mediator of diabetic retinopathy[J]. Front Immunol, 2013, 4: 173. DOI: 10.3389/fimmu.2013.00173.
|
43. |
May JM. Ascorbic acid repletion: a possible therapy for diabetic macular edema?[J]. Free Radic Biol Med, 2016, 94: 47-54. DOI: 10.1016/j.freeradbiomed.2016.02.019.
|
44. |
Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry[J]. Nat Protoc, 2011, 6(7): 1060-1083. DOI: 10.1038/nprot.2011.335.
|
45. |
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism[J]. Diabetes, 2005, 54(6): 1615-1625. DOI: 10.2337/diabetes.54.6.1615.
|
46. |
Lauwen S, de Jong EK, Lefeber DJ, et al. Omics biomarkers in ophthalmology[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): Bio88-Bio98. DOI: 10.1167/iovs.17-21809.
|
47. |
Cabral T, Lima LH, Polido J, et al. Aqueous vascular endothelial growth factor and clinical outcomes correlation after single intravitreal injection of bevacizumab in patients with neovascular age-related macular degeneration[J]. Int J Retina Vitreous, 2017, 3: 6. DOI: 10.1186/s40942-017-0066-y.
|
48. |
Maurice DM. Flow of water between aqueous and vitreous compartments in the rabbit eye [J]. Am J Physiol, 1987, 252(1 Pt 2): F104-108. DOI: 10.1152/ajprenal.1987.252.1.F104.
|
49. |
Trivedi D, Denniston AK, Murray PI. Safety profile of anterior chamber paracentesis performed at the slit lamp[J]. Clin Exp Ophthalmol, 2011, 39(8): 725-728. DOI: 10.1111/j.1442-9071.2011.02565.x.
|
50. |
Lam DS, Chua JK, Tham CC, et al. Efficacy and safety of immediate anterior chamber paracentesis in the treatment of acute primary angle-closure glaucoma: a pilot study[J]. Ophthalmology, 2002, 109(1): 64-70. DOI: 10.1016/s0161-6420(01)00857-0.
|