1. |
Seabra MC, Brown MS, Goldstein JL. Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase[J]. Science, 1993, 259(5093): 377-381. DOI: 10.1126/science.8380507.
|
2. |
Patricio MI, Barnard AR, Xue K, et al. Choroideremia: molecular mechanisms and development of AAV gene therapy[J]. Expert Opin Biol Ther, 2018, 18(7): 807-820. DOI: 10.1080/14712598.2018.1484448.
|
3. |
Furgoch MJ, Mewes-Arès J, Radziwon A, et al. Molecular genetic diagnostic techniques in choroideremia[J]. Mol Vis, 2014, 20: 535-544.
|
4. |
Freund PR, Sergeev YV, Macdonald IM. Analysis of a large choroideremia dataset does not suggest a preference for inclusion of certain genotypes in future trials of gene therapy[J]. Mol Genet Genomic Med, 2016, 4(3): 344-358. DOI: 10.1002/mgg3.208.
|
5. |
Di Iorio V, Esposito G, De Falco F, et al. CHM/REP1 transcript expression and loss of visual function in patients affected by choroideremia[J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1547-1555. DOI: 10.1167/iovs.18-25501.
|
6. |
Shen LL, Ahluwalia A, Sun M, et al. Long-term natural history of visual acuity in eyes with choroideremia: a systematic review and meta-analysis of data from 1004 individual eyes[J]. Br J Ophthalmol, 2021, 105(2): 271-278. DOI: 10.1136/bjophthalmol-2020-316028.
|
7. |
韩筱煦, 李蕙, 吴世靖, 等. 中国无脉络膜症患者自然病程研究[J]. 中华实验眼科杂志, 2018, 36(7): 519-525. DOI: 10.3760/cma.j.issn.2095-0160.2018.07.007.Han XX, Li H, Wu SJ, et al. Study of natural history of Chinese patients with choroideremia[J]. Chin J Exp Ophthalmol, 2018, 36(7): 519-525. DOI: 10.3760/cma.j.issn.2095-0160.2018.07.007.
|
8. |
Dimopoulos IS, Freund PR, Knowles JA, et al. The natural history of full-field stimulus threshold decline in choroideremia[J]. Retina, 2018, 38(9): 1731-1742. DOI: 10.1097/IAE.0000000000001764.
|
9. |
Simunovic MP, Jolly JK, Xue K, et al. The spectrum of CHM gene mutations in choroideremia and their relationship to clinical phenotype[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6033-6039. DOI: 10.1167/iovs.16-20230.
|
10. |
Aleman TS, Han G, Serrano LW, et al. Natural history of the central structural abnormalities in choroideremia: a prospective cross-sectional study[J]. Ophthalmology, 2017, 124(3): 359-373. DOI: 10.1016/j.ophtha.2016.10.022.
|
11. |
睢瑞芳, 姚凤霞. 了解基因检测技术在眼遗传病精准诊疗中的应用[J]. 中华眼底病杂志, 2021, 37(11): 831-835. DOI: 10.3760/cma.j.cn511434-20211027-00608.Sui RF, Yao FX. Understanding the application of genetic testing in practicing precision medicine for inherited ocular disease[J]. Chin J Ocul Fundus Dis, 2021, 37(11): 831-835. DOI: 10.3760/cma.j.cn511434-20211027-00608.
|
12. |
Aylward JW, Xue K, Patricio MI, et al. Retinal degeneration in choroideremia follows an exponential decay function[J]. Ophthalmology, 2018, 125(7): 1122-1124. DOI: 10.1016/j.ophtha.2018.02.004.
|
13. |
Hariri AH, Ip MS, Girach A, et al. Macular spatial distribution of preserved autofluorescence in patients with choroideremia[J]. Br J Ophthalmol, 2019, 103(7): 933-937. DOI: 10.1136/bjophthalmol-2018-312620.
|
14. |
Abbouda A, Avogaro F, Moosajee M, et al. Update on gene therapy clinical trials for choroideremia and potential experimental therapies[J]. Medicina (Kaunas), 2021, 57(1): 64. DOI: 10.3390/medicina57010064.
|
15. |
Zeitz C, Nassisi M, Laurent-Coriat C, et al. CHM mutation spectrum and disease: an update at the time of human therapeutic trials[J]. Hum Mutat, 2021, 42(4): 323-341. DOI: 10.1002/humu.24174.
|
16. |
Xue K, Oldani M, Jolly JK, et al. Correlation of optical coherence tomography and autofluorescence in the outer retina and choroid of patients with choroideremia[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3674-3684. DOI: 10.1167/iovs.15-18364.
|
17. |
Birtel J, Salvetti AP, Jolly JK, et al. Near-infrared autofluorescence in choroideremia: anatomic and functional correlations[J]. Am J Ophthalmol, 2019, 199: 19-27. DOI: 10.1016/j.ajo.2018.10.021.
|
18. |
Nabholz N, Lorenzini MC, Bocquet B, et al. Clinical evaluation and cone alterations in choroideremia[J]. Ophthalmology, 2016, 123(8): 1830-1832. DOI: 10.1016/j.ophtha.2016.02.025.
|
19. |
Romano F, Arrigo A, Maclaren RE, et al. Hyperreflective foci as a pathogenetic biomarker in choroideremia[J]. Retina, 2020, 40(8): 1634-1640. DOI: 10.1097/IAE.0000000000002645.
|
20. |
Goldberg NR, Greenberg JP, Laud K, et al. Outer retinal tubulation in degenerative retinal disorders[J]. Retina, 2013, 33(9): 1871-1876. DOI: 10.1097/IAE.0b013e318296b12f.
|
21. |
Van Schuppen SM, Talib M, Bergen AA, et al. Long-term follow-up of patients with choroideremia with scleral pits and tunnels as a novel observation[J]. Retina, 2018, 38(9): 1713-1724. DOI: 10.1097/IAE.0000000000001844.
|
22. |
Harvey CM, Whitmore SS, Critser DB, et al. Scleral pits represent degeneration around the posterior ciliary arteries and are signs of disease severity in choroideremia[J]. Eye (Lond), 2020, 34(4): 746-754. DOI: 10.1038/s41433-019-0599-4.
|
23. |
Battaglia Parodi M, Arrigo A, Maclaren RE, et al. Vascular alterations revealed with optical coherence tomography angiography in patients with choroideremia[J]. Retina, 2019, 39(6): 1200-1205. DOI: 10.1097/IAE.0000000000002118.
|
24. |
Arrigo A, Romano F, Parodi MB, et al. Reduced vessel density in deep capillary plexus correlates with retinal layer thickness in choroideremia[J]. Br J Ophthalmol, 2021, 105(5): 687-693. DOI: 10.1136/bjophthalmol-2020-316528.
|
25. |
Abbouda A, Dubis AM, Webster AR, et al. Identifying characteristic features of the retinal and choroidal vasculature in choroideremia using optical coherence tomography angiography[J]. Eye (Lond), 2018, 32(3): 563-571. DOI: 10.1038/eye.2017.242.
|
26. |
Jain N, Jia Y, Gao SS, et al. Optical coherence tomography angiography in choroideremia: correlating choriocapillaris loss with overlying degeneration[J]. JAMA Ophthalmol, 2016, 134(6): 697-702. DOI: 10.1001/jamaophthalmol.2016.0874.
|
27. |
Ong SS, Patel TP, Singh MS. Optical coherence tomography angiography imaging in inherited retinal diseases[J/OL]. J Clin Med, 2019, 8(12): 2078[2019-11-28]. https://pubmed.ncbi.nlm.nih.gov/31795241/. DOI: 10.3390/jcm8122078.
|
28. |
Ranjan R, Verghese S, Salian R, et al. OCT angiography for the diagnosis and management of choroidal neovascularization secondary to choroideremia[J/OL]. Am J Ophthalmol Case Rep, 2021, 22: 101042[2021-02-25]. https://pubmed.ncbi.nlm.nih.gov/33681533/. DOI: 10.1016/j.ajoc.2021.101042.
|
29. |
Patel RC, Gao SS, Zhang M, et al. Optical coherence tomography angiography of choroidal neovascularization in four inherited retinal dystrophies[J]. Retina, 2016, 36(12): 2339-2347. DOI: 10.1097/IAE.0000000000001159.
|
30. |
Palejwala NV, Lauer AK, Weleber RG. Choroideremia associated with choroidal neovascularization treated with intravitreal Bevacizumab[J]. Clin Ophthalmol, 2014, 8: 1675-1679. DOI: 10.2147/OPTH.S68243.
|
31. |
Cunha DL, Richardson R, Tracey-White D, et al. REP1 deficiency causes systemic dysfunction of lipid metabolism and oxidative stress in choroideremia[J/OL]. JCI Insight, 2021, 6(9): e146934[2021-05-10]. https://pubmed.ncbi.nlm.nih.gov/33755601/. DOI: 10.1172/jci.insight.146934.
|
32. |
Patrício MI, Barnard AR, Cox CI, et al. The biological activity of AAV vectors for choroideremia gene therapy can be measured by in vitro prenylation of RAB6A[J]. Mol Ther Methods Clin Dev, 2018, 9: 288-295. DOI: 10.1016/j.omtm.2018.03.009.
|
33. |
Xue K, Jolly JK, Barnard AR, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia[J]. Nat Med, 2018, 24(10): 1507-1512. DOI: 10.1038/s41591-018-0185-5.
|
34. |
Fischer MD, Ochakovski GA, Beier B, et al. Changes in retinal sensitivity after gene therapy in choroideremia[J]. Retina, 2020, 40(1): 160-168. DOI: 10.1097/IAE.0000000000002360.
|
35. |
Lam BL, Davis JL, Gregori NZ, et al. Choroideremia gene therapy phase 2 clinical trial: 24-month results[J]. Am J Ophthalmol, 2019, 197: 65-73. DOI: 10.1016/j.ajo.2018.09.012.
|
36. |
Dimopoulos IS, Hoang SC, Radziwon A, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the alberta experience[J]. Am J Ophthalmol, 2018, 193: 130-142. DOI: 10.1016/j.ajo.2018.06.011.
|
37. |
Patrício MI, Cox CI, Blue C, et al. Inclusion of PF68 surfactant improves stability of rAAV titer when passed through a surgical device used in retinal gene therapy[J]. Mol Ther Methods Clin Dev, 2020, 17: 99-106. DOI: 10.1016/j.omtm.2019.11.005.
|
38. |
Bucher K, Rodriguez-Bocanegra E, Dauletbekov D, et al. Immune responses to retinal gene therapy using adeno-associated viral vectors-implications for treatment success and safety[J/OL]. Prog Retin Eye Res, 2021, 83: 100915[2020-10-15]. https://pubmed.ncbi.nlm.nih.gov/33069860/. DOI: 10.1016/j.preteyeres.2020.100915.
|
39. |
Pennesi ME, Birch DG, Duncan JL, et al. CHOROIDEREMIA: retinal degeneration with an unmet need[J]. Retina, 2019, 39(11): 2059-2069. DOI: 10.1097/IAE.0000000000002553.
|
40. |
Richardson R, Smart M, Tracey-White D, et al. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders[J]. Exp Eye Res, 2017, 155: 24-37. DOI: 10.1016/j.exer.2017.01.001.
|
41. |
Moosajee M, Tracey-White D, Smart M, et al. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model[J]. Hum Mol Genet, 2016, 25(16): 3416-3431. DOI: 10.1093/hmg/ddw184.
|
42. |
Garanto A, van der Velde-Visser SD, Cremers FPM, et al. Antisense oligonucleotide-based splice correction of a deep-intronic mutation in CHM underlying choroideremia[J]. Adv Exp Med Biol, 2018, 1074: 83-89. DOI: 10.1007/978-3-319-75402-4_11.
|
43. |
Macdonald IM, Moen C, Duncan JL, et al. Perspectives on gene therapy: choroideremia represents a challenging model for the treatment of other inherited retinal degenerations[J]. Transl Vis Sci Technol, 2020, 9(3): 17. DOI: 10.1167/tvst.9.3.17.
|
44. |
Han X, Wu S, Li H, et al. Clinical characteristics and molecular genetic analysis of a cohort of Chinese patients with choroideremia[J]. Retina, 2020, 40(11): 2240-2253. DOI: 10.1097/IAE.0000000000002743.
|