1. |
廖星星, 徐国兴. 葡萄膜炎的治疗进展[J]. 国际眼科杂志, 2020, 20(4): 631-634. DOI: 10.3980/j.issn.1672-5123.2020.4.11.Liao XX, Xu GX. Progress in the treatment of uveitis[J]. Int Eye Sci, 2020, 20(4): 631-634. DOI: 10.3980/j.issn.1672-5123.2020.4.11.
|
2. |
Liu T, Bi H, Wang X, et al. Macular abnormalities in Chinese patients with uveitis[J]. Optom Vis Sci, 2015, 92(8): 858-862. DOI: 10.1097/opx.0000000000000645.
|
3. |
Durrani OM, Tehrani NN, Marr JE, et al. Degree, duration, and causes of visual loss in uveitis[J]. Br J Ophthalmol, 2004, 88(9): 1159-1162. DOI: 10.1136/bjo.2003.037226.
|
4. |
Yang P, Zhong Z, Su G, et al. Retinal vasculitis, a common manifestation of idiopathic pediattric uveitis?[J]. Retina, 2021, 41(3): 610-619. DOI: 10.1097/iae.0000000000002885.
|
5. |
Hsia NY, Li YL, Lin CJ, et al. Ultra-widefield angiography in the diagnosis and management of uveitis[J]. Taiwan J Ophthalmol, 2018, 8(3): 159-163. DOI: 10.4103/tjo.tjo_115_17.
|
6. |
Nazari H, Dustin L, Heussen FM, et al. Morphometric spectral-domain optical coherence tomography features of epiretinal membrane correlate with visual acuity in patients with uveitis[J]. Am J Ophthalmol, 2012, 154(1): 78-86. DOI: 10.1016/j.ajo.2012.01.032.
|
7. |
Mendis KR, Balaratnasingam C, Yu P, et al. Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5864-5869. DOI: 10.1167/iovs.10-5333.
|
8. |
Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. DOI: 10.1001/jamaophthalmol.2014.3616.
|
9. |
Chalam KV, Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. J Ophthalmic Vis Res, 2016, 11(1): 84-92. DOI: 10.4103/2008-322x.180709.
|
10. |
Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology, 2014, 121(7): 1435-1444. DOI: 10.1016/j.ophtha.2014.01.034.
|
11. |
Kim AY, Rodger DC, Shahidzadeh A, et al. Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 171: 101-112. DOI: 10.1016/j.ajo.2016.08.035.
|
12. |
Qu Y, Zhao C, Pei M, et al. Anterior segment inflammation in pediatric uveitis is associated with reduced retinal vascular density as quantified by optical coherence tomography angiography[J]. Ocul Immunol Inflamm, 2022, 30(2): 392-396. DOI: 10.1080/09273948.2020.1803923.
|
13. |
Agarwal A, Agrawal R, Khandelwal N, et al. Choroidal structural changes in tubercular multifocal serpiginoid choroiditis[J]. Ocul Immunol Inflamm, 2018, 26(6): 838-844. DOI: 10.1080/09273948.2017.1370650.
|
14. |
Ağın A, Kadayıfçılar S, Sönmez HE, et al. Evaluation of choroidal thickness, choroidal vascularity index and peripapillary retinal nerve fiber layer in patients with juvenile systemic lupus erythematosus[J]. Lupus, 2019, 28(1): 44-50. DOI: 10.1177/0961203318814196.
|
15. |
Agrawal R, Li LK, Nakhate V, et al. Choroidal vascularity index in Vogt-Koyanagi-Harada disease: an EDI-OCT derived tool for monitoring disease progression[J]. Transl Vis Sci Technol, 2016, 5(4): 7. DOI: 10.1167/tvst.5.4.7.
|
16. |
Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop[J]. Am J Ophthalmol, 2005, 140(3): 509-516. DOI: 10.1016/j.ajo.2005.03.057.
|
17. |
Ang M, Wong CW, Hoang QV, et al. Imaging in myopia: potential biomarkers, current challenges and future developments[J]. Br J Ophthalmol, 2019, 103(6): 855-862. DOI: 10.1136/bjophthalmol-2018-312866.
|
18. |
Kuehlewein L, Tepelus TC, An L, et al. Noninvasive visualization and analysis of the human parafoveal capillary network using swept source OCT optical microangiography[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3984-3988. DOI: 10.1167/iovs.15-16510.
|
19. |
Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the Beijing Eye Study[J]. Ophthalmology, 2013, 120(1): 175-180. DOI: 10.1016/j.ophtha.2012.07.048.
|
20. |
Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55. DOI: 10.1016/j.preteyeres.2017.11.003.
|
21. |
Karaca I, Yılmaz SG, Afrashi F, et al. Assessment of macular capillary perfusion in patients with inactive Vogt-Koyanagi-Harada disease: an optical coherence tomography angiography study[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(6): 1181-1190. DOI: 10.1007/s00417-020-04676-x.
|
22. |
Tian M, Tappeiner C, Zinkernagel MS, et al. Evaluation of vascular changes in intermediate uveitis and retinal vasculitis using swept-source wide-field optical coherence tomography angiography[J]. Br J Ophthalmol, 2019, 103(9): 1289-1295. DOI: 10.1136/bjophthalmol-2018-313078.
|
23. |
Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes[J]. Retina, 2016, 36(11): 2039-2050. DOI: 10.1097/iae.0000000000001077.
|
24. |
Pichi F, Sarraf D, Arepalli S, et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases[J]. Prog Retin Eye Res, 2017, 59: 178-201. DOI: 10.1016/j.preteyeres.2017.04.005.
|
25. |
Eiger-Moscovich M, Tomkins-Netzer O, Amer R, et al. Visual and clinical outcome of macular edema complicating pediatric noninfectious uveitis[J]. Am J Ophthalmol, 2019, 202: 72-78. DOI: 10.1016/j.ajo.2019.02.011.
|
26. |
Basarir B, Celik U, Altan C, et al. Choroidal thickness changes determined by EDI-OCT on acute anterior uveitis in patients with HLA-B27-positive ankylosing spondylitis[J]. Int Ophthalmol, 2018, 38(1): 307-312. DOI: 10.1007/s10792-017-0464-z.
|
27. |
Akarsu Acar OP, Cengiz H, Onur IU, et al. Assessment of the retinal and choroidal microvascularization in polycystic ovary syndrome: an optical coherence tomography angiography study[J]. Int Ophthalmol, 2021, 41(7): 2339-2346. DOI: 10.1007/s10792-021-01787-0.
|
28. |
Maruko I, Iida T, Sugano Y, et al. Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease[J]. Retina, 2011, 31(3): 510-517. DOI: 10.1097/IAE.0b013e3181eef053.
|
29. |
Nagasawa T, Mitamura Y, Katome T, et al. Macular choroidal thickness and volume in healthy pediatric individuals measured by swept-source optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 7068-7074. DOI: 10.1167/iovs.13-12350.
|
30. |
Bradley PD, Sim DA, Keane PA, et al. The evaluation of diabetic macular ischemia using optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 626-631. DOI: 10.1167/iovs.15-18034.
|
31. |
Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease[J]. Prog Retin Eye Res, 2012, 31(5): 377-406. DOI: 10.1016/j.preteyeres.2012.04.004.
|
32. |
Liang A, Jia S, Gao F, et al. Decrease of choriocapillary vascular density measured by optical coherence tomography angiography in Vogt-Koyanagi-Harada disease[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(11): 3395-3404. DOI: 10.1007/s00417-021-05238-5.
|
33. |
Pleyer U, Neri P, Deuter C. New pharmacotherapy options for noninfectious posterior uveitis[J]. Int Ophthalmol, 2021, 41(6): 2265-2281. DOI: 10.1007/s10792-021-01763-8.
|