1. |
Shao Y, Dong LJ, Takahashi Y, et al. MiRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy[J/OL]. Am J Physiol Endocrinol Metab, 2019, 316(3): E443-452[2019-03-01]. https://pubmed.ncbi.nlm.nih.gov/30576241/. DOI: 10.1152/ajpendo.00360.2018.
|
2. |
Hachana S, Fontaine O, Sapieha P, et al. The effects of anti-VEGF and kinin B(1) receptor blockade on retinal inflammation in laser-induced choroidal neovascularization[J]. Br J Pharmacol, 2020, 177(9): 1949-1966. DOI: 10.1111/bph.14962.
|
3. |
Singh AD, Kulkarni YA. Vascular adhesion protein-1 and microvascular diabetic complications[J]. Pharmacol Rep, 2022, 74(1): 40-46. DOI: 10.1007/s43440-021-00343-y.
|
4. |
Elmasry K, Ibrahim AS, Abdulmoneim S, et al. Bioactive lipids and pathological retinal angiogenesis[J]. Br J Pharmacol, 2019, 176(1): 93-109. DOI: 10.1111/bph.14507.
|
5. |
Wan D, Jiang W, Hao J. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response[J]. Front Immunol, 2020, 11: 615. DOI: 10.3389/fimmu.2020.00615.
|
6. |
Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521. DOI: 10.1038/s41580-020-0244-x.
|
7. |
Yu Y, Yang W, Bilotta AJ, et al. STING controls intestinal homeostasis through promoting antimicrobial peptide expression in epithelial cells[J]. FASEB J, 2020, 34(11): 15417-15430. DOI: 10.1096/fj.202001524R.
|
8. |
Chen Q, Tang L, Zhang Y, et al. STING up-regulates VEGF expression in oxidative stress-induced senescence of retinal pigment epithelium via NF-κB/HIF-1α pathway[J/OL]. Life Sci, 2022, 293: 120089[2022-03-15]. https://pubmed.ncbi.nlm.nih.gov/35007563/. DOI: 10.1016/j.lfs.2021.120089.
|
9. |
Han B, Wang X, Wu P, et al. Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway[J/OL]. J Hazard Mater, 2021, 417: 125984[2021-09-05]. https://pubmed.ncbi.nlm.nih.gov/34020360/. DOI: 10.1016/j.jhazmat.2021.125984.
|
10. |
Miyagi S, Watanabe T, Hara Y, et al. A STING inhibitor suppresses EBV-induced B cell transformation and lymphomagenesis[J]. Cancer Sci, 2021, 112(12): 5088-5099. DOI: 10.1111/cas.15152.
|
11. |
Dong L, Zhang Z, Liu X, et al. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy[J]. J Mol Med (Berl), 2021, 99(2): 225-240. DOI: 10.1007/s00109-020-01995-8.
|
12. |
Zhao J, Liu X, Lin J, et al. AKT2 identified as a potential target of mir-29a-3p via microRNA profiling of patients with high proliferation lacrimal gland adenoid cystic carcinoma[J/OL]. Exp Eye Res, 2022, 219:109067[2022-04-07]. https://linkinghub.elsevier.com/retrieve/pii/S0014-4835(22)00147-6. DOI: 10.1016/j.exer.2022.109067.
|
13. |
Teng H, Hong Y, Cao J, et al. Senescence marker protein30 protects lens epithelial cells against oxidative damage by restoring mitochondrial function[J]. Bioengineered, 2022, 13(5): 12955-12971. DOI: 10.1080/21655979.2022.2079270.
|
14. |
Peng Y, Zhuang J, Ying G, et al. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage[J]. J Neuroinflammation, 2020, 17(1): 165. DOI: 10.1186/s12974-020-01830-4.
|
15. |
Rom S, Heldt NA, Gajghate S, et al. Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles[J/OL]. Sci Rep, 2020, 10(1): 7274[2020-04-29]. https://pubmed.ncbi.nlm.nih.gov/32350344/. DOI: 10.1038/s41598-020-64349-x.
|
16. |
Crijns H, Vanheule V, Proost P. Targeting chemokine-glycosaminoglycan interactions to inhibit inflammation[J]. Front Immunol, 2020, 11: 483. DOI: 10.3389/fimmu.2020.00483.
|
17. |
Dong L, Lin T, Li W, et al. Antioxidative effects of polypyrimidine tract-binding protein-associated splicing factor against pathological retinal angiogenesis through promotion of mitochondrial function[J]. J Mol Med (Berl), 2021, 99(7): 967-980. DOI: 10.1007/s00109-021-02069-z.
|
18. |
Dunphy G, Flannery SM, Almine JF, et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage[J]. Mol Cell, 2018, 71(5): 745-760. DOI: 10.1016/j.molcel.2018.07.034.
|
19. |
Wang X, Rao H, Zhao J, et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease[J]. Lab Invest, 2020, 100(4): 542-552. DOI: 10.1038/s41374-019-0342-6.
|
20. |
Zou M, Ke Q, Nie Q, et al. Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration[J]. Cell Death Differ, 2022, 29(9): 1816-1833. DOI: 10.1038/s41418-022-00967-4.
|
21. |
Guo Y, Gu R, Gan D, et al. Mitochondrial DNA drives noncanonical inflammation activation via cGAS-STING signaling pathway in retinal microvascular endothelial cells[J]. Cell Commun Signal, 2020, 18(1): 172. DOI: 10.1186/s12964-020-00637-3.
|
22. |
Dong L, Li W, Lin T, et al. PSF functions as a repressor of hypoxia-induced angiogenesis by promoting mitochondrial function[J]. Cell Commun Signal, 2021, 19(1): 14. DOI: 10.1186/s12964-020-00684-w.
|
23. |
Saddala MS, Lennikov A, Huang H. Placental growth factor regulates the pentose phosphate pathway and antioxidant defense systems in human retinal endothelial cells[J/OL]. J Proteomics, 2020, 217: 103682[2020-04-15]. https://pubmed.ncbi.nlm.nih.gov/32058040/. DOI: 10.1016/j.jprot.2020.103682.
|