1. |
Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16012[2016-03-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12.
|
2. |
Jee D, Lee WK, Kang S. Prevalence and risk factors for diabetic retinopathy: the Korea National Health and Nutrition Examination Survey 2008-2011[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6827-6833. DOI: 10.1167/iovs.13-12654.
|
3. |
Lin KY, Hsih WH, Lin YB, et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy[J]. J Diabetes Investig, 2021, 12(8): 1322-1325. DOI: 10.1111/jdi.13480.
|
4. |
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239. DOI: 10.1056/NEJMra1005073.
|
5. |
Delaey C, Van De Voorde J. Regulatory mechanisms in the retinal and choroidal circulation[J]. Ophthalmic Res, 2000, 32(6): 249-256. DOI: 10.1159/000055622.
|
6. |
Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
|
7. |
Tan KA, Gupta P, Agarwal A, et al. State of science: choroidal thickness and systemic health[J]. Surv Ophthalmol, 2016, 61(5): 566-581. DOI: 10.1016/j.survophthal.2016.02.007.
|
8. |
Campos A, Campos EJ, Martins J, et al. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema[J]. Acta Ophthalmol, 2017, 95(5): 446-459. DOI: 10.1111/aos.13210.
|
9. |
Foo VHX, Gupta P, Nguyen QD, et al. Decrease in choroidal vascularity index of Haller's layer in diabetic eyes precedes retinopathy[J/OL]. BMJ Open Diabetes Res Care, 2020, 8(1): e001295[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32912848/. DOI: 10.1136/bmjdrc-2020-001295.
|
10. |
Muir ER, Rentería RC, Duong TQ. Reduced ocular blood flow as an early indicator of diabetic retinopathy in a mouse model of diabetes[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6488-6494. DOI: 10.1167/iovs.12-9758.
|
11. |
Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography[J]. Am J Ophthalmol, 2008, 146(4): 496-500. DOI: 10.1016/j.ajo.2008.05.032.
|
12. |
Wei X, Ting DSW, Ng WY, et al. Choroidal vascularity index: a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration[J]. Retina, 2017, 37(6): 1120-1125. DOI: 10.1097/IAE.0000000000001312.
|
13. |
Lee SW, Yu SY, Seo KH, et al. Diurnal variation in choroidal thickness in relation to sex, axial length, and baseline choroidal thickness in healthy Korean subjects[J]. Retina, 2014, 34(2): 385-393. DOI: 10.1097/IAE.0b013e3182993f29.
|
14. |
Iovino C, Pellegrini M, Bernabei F, et al. Choroidal vascularity index: an in-depth analysis of this novel optical coherence tomography parameter[J]. J Clin Med, 2020, 9(2): 595. DOI: 10.3390/jcm9020595.
|
15. |
Branchini LA, Adhi M, Regatieri CV, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography[J]. Ophthalmology, 2013, 120(9): 1901-1908. DOI: 10.1016/j.ophtha.2013.01.066.
|
16. |
Sonoda S, Sakamoto T, Yamashita T, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3893-3899. DOI: 10.1167/iovs.14-14447.
|
17. |
Agrawal R, Salman M, Tan KA, et al. Choroidal vascularity index (CVI)--a novel optical coherence tomography parameter for monitoring patients with panuveitis?[J/OL]. PLoS One, 2016, 11(1): e0146344[2016-01-11]. https://pubmed.ncbi.nlm.nih.gov/26751702/. DOI: 10.1371/journal.pone.0146344.
|
18. |
Liu G, Li Y, Hu Y, et al. Influence of lifestyle on incident cardiovascular disease and mortality in patients with diabetes mellitus[J]. J Am Coll Cardiol, 2018, 71(25): 2867-2876. DOI: 10.1016/j.jacc.2018.04.027.
|
19. |
Sinclair SH, Schwartz SS. Diabetic retinopathy-an underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes[J]. Front Endocrinol (Lausanne), 2019, 10: 843. DOI: 10.3389/fendo.2019.00843.
|
20. |
Kim M, Ha MJ, Choi SY, et al. Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography[J/OL]. Sci Rep, 2018, 8(1): 70[2018-01-08]. https://pubmed.ncbi.nlm.nih.gov/29311618/. DOI: 10.1038/s41598-017-18511-7.
|
21. |
Temel E, Özcan G, Yanık Ö, et al. Choroidal structural alterations in diabetic patients in association with disease duration, HbA1c level, and presence of retinopathy[J]. Int Ophthalmol, 2022, 42(12): 3661-3672. DOI: 10.1007/s10792-022-02363-w.
|
22. |
Endo H, Kase S, Ito Y, et al. Relationship between choroidal structure and duration of diabetes[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(6): 1133-1140. DOI: 10.1007/s00417-019-04295-1.
|
23. |
Romero-Aroca P, Navarro-Gil R, Valls-Mateu A, et al. Differences in incidence of diabetic retinopathy between type 1 and 2 diabetes mellitus: a nine-year follow-up study[J]. Br J Ophthalmol, 2017, 101(10): 1346-1351. DOI: 10.1136/bjophthalmol-2016-310063.
|
24. |
Aksoy M, Simsek M, Apaydın M. Choroidal vascularity index in patients with type-1 diabetes mellitus without diabetic retinopathy[J]. Curr Eye Res, 2021, 46(6): 865-870. DOI: 10.1080/02713683.2020.1846755.
|
25. |
Giblin MJ, Ontko CD, Penn JS. Effect of cytokine-induced alterations in extracellular matrix composition on diabetic retinopathy-relevant endothelial cell behaviors[J/OL]. Sci Rep, 2022, 12(1): 12955[2022-07-28]. https://pubmed.ncbi.nlm.nih.gov/35902594/. DOI: 10.1038/s41598-022-12683-7.
|
26. |
Sinha B, Ghosal S. A target HbA1c between 7 and 7.7% reduces microvascular and macrovascular events in T2D regardless of duration of diabetes: a meta-analysis of randomized controlled trials[J]. Diabetes Ther, 2021, 12(6): 1661-1676. DOI: 10.1007/s13300-021-01062-6.
|
27. |
Nicolini N, Tombolini B, Barresi C, et al. Assessment of diabetic choroidopathy using ultra-widefield optical coherence tomography[J]. Transl Vis Sci Technol, 2022, 11(3): 35. DOI: 10.1167/tvst.11.3.35.
|
28. |
Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1991, 98(Suppl): 786-806.
|
29. |
中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2014年)[J]. 中华眼科杂志, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.Ocular Fundus Diseases Group of Ophthalmology Branch of Chinese Medical Association. Clinical guidelines for the diagnosis and treatment of diabetic retinopathy in China (2014)[J]. Chin J Ophthalmol, 2014, 50(11): 851-865. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.014.
|
30. |
Wang H, Tao Y. Choroidal structural changes correlate with severity of diabetic retinopathy in diabetes mellitus[J]. BMC Ophthalmol, 2019, 19(1): 186. DOI: 10.1186/s12886-019-1189-8.
|
31. |
Marques JH, Marta A, Castro C, et al. Choroidal changes and associations with visual acuity in diabetic patients[J]. Int J Retina Vitreous, 2022, 8(1): 6. DOI: 10.1186/s40942-021-00355-z.
|
32. |
Kakiuchi N, Terasaki H, Sonoda S, et al. Regional differences of choroidal structure determined by wide-field optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2019, 60(7): 2614-2622. DOI: 10.1167/iovs.18-24296.
|
33. |
Le NT, Kroeger ZA, Lin WV, et al. Novel treatments for diabetic macular edema and proliferative diabetic retinopathy[J]. Curr Diab Rep, 2021, 21(10): 43. DOI: 10.1007/s11892-021-01412-5.
|
34. |
Melancia D, Vicente A, Cunha JP, et al. Diabetic choroidopathy: a review of the current literature[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(8): 1453-1461. DOI: 10.1007/s00417-016-3360-8.
|
35. |
Gupta C, Tan R, Mishra C, et al. Choroidal structural analysis in eyes with diabetic retinopathy and diabetic macular edema-a novel OCT based imaging biomarker[J/OL]. PLoS One, 2018, 13(12): e0207435[2018-12-11]. https://pubmed.ncbi.nlm.nih.gov/30533048/. DOI: 10.1371/journal.pone.0207435.
|
36. |
Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group[J]. Ophthalmology, 1991, 98(Suppl): 766-785.
|
37. |
El Rami H, Barham R, Sun JK, et al. Evidence-based treatment of diabetic retinopathy[J]. Semin Ophthalmol, 2017, 32(1): 67-74. DOI: 10.1080/08820538.2016.1228397.
|
38. |
Kim JT, Park N. Changes in choroidal vascular parameters following pan-retinal photocoagulation using swept-source optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(1): 39-47. DOI: 10.1007/s00417-019-04475-z.
|
39. |
Okamoto M, Yamashita M, Ogata N. Effects of intravitreal injection of ranibizumab on choroidal structure and blood flow in eyes with diabetic macular edema[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(5): 885-892. DOI: 10.1007/s00417-018-3939-3.
|
40. |
Song Y, Tani T, Omae T, et al. Retinal blood flow reduction after panretinal photocoagulation in type 2 diabetes mellitus: doppler optical coherence tomography flowmeter pilot study[J/OL]. PLoS One, 2018, 13(11): e0207288[2018-11-08]. https://pubmed.ncbi.nlm.nih.gov/30408113/. DOI: 10.1371/journal.pone.0207288.
|
41. |
Iwase T, Kobayashi M, Yamamoto K, et al. Effects of photocoagulation on ocular blood flow in patients with severe non-proliferative diabetic retinopathy[J/OL]. PLoS One, 2017, 12(3): e0174427[2017-03-29]. https://pubmed.ncbi.nlm.nih.gov/28355247/. DOI: 10.1371/journal.pone.0174427.
|
42. |
Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface[J]. Prog Retin Eye Res, 2018, 63: 20-68. DOI: 10.1016/j.preteyeres.2017.10.006.
|
43. |
Cui L, Jiao B, Han Q. Effect of intravitreal anti-vascular growth factor agents with or without macular photocoagulation on diabetic macular edema: a systematic review and meta-analysis[J]. Diabetes Ther, 2019, 10(4): 1283-1296. DOI: 10.1007/s13300-019-0631-5.
|
44. |
Saint-Geniez M, Maldonado AE, D'Amore PA. VEGF expression and receptor activation in the choroid during development and in the adult[J]. Invest Ophthalmol Vis Sci, 2006, 47(7): 3135-3142. DOI: 10.1167/iovs.05-1229.
|
45. |
Kase S, Endo H, Takahashi M, et al. Alteration of choroidal vascular structure in diabetic retinopathy[J]. Br J Ophthalmol, 2020, 104(3): 417-421. DOI: 10.1136/bjophthalmol-2019-314273.
|
46. |
Sonoda S, Sakamoto T, Shirasawa M, et al. Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2013, 54(8): 5367-5374. DOI: 10.1167/iovs.13-12382.
|
47. |
Sonoda S, Sakamoto T, Yamashita T, et al. Effect of intravitreal triamcinolone acetonide or bevacizumab on choroidal thickness in eyes with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3979-3985. DOI: 10.1167/iovs.14-14188.
|
48. |
Laíns I, Figueira J, Santos AR, et al. Choroidal thickness in diabetic retinopathy: the influence of antiangiogenic therapy[J]. Retina, 2014, 34(6): 1199-1207. DOI: 10.1097/IAE.0000000000000053.
|
49. |
Pellegrini M, Bernabei F, Mercanti A, et al. Short-term choroidal vascular changes after aflibercept therapy for neovascular age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(4): 911-918. DOI: 10.1007/s00417-020-04957-5.
|
50. |
Kase S, Endo H, Takahashi M, et al. Involvements of choroidal vascular structures with local treatments in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2022, 32(1): 450-459. DOI: 10.1177/11206721211027103.
|
51. |
Cole ED, Novais EA, Louzada RN, et al. Visualization of changes in the choriocapillaris, choroidal vessels, and retinal morphology after focal laser photocoagulation using OCT angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 356-361. DOI: 10.1167/iovs.15-18473.
|
52. |
Zhang Z, Meng X, Wu Z, et al. Changes in choroidal thickness after panretinal photocoagulation for diabetic retinopathy: a 12-week longitudinal study[J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2631-2638. DOI: 10.1167/iovs.14-16226.
|
53. |
Rizzo S, Savastano A, Finocchio L, et al. Choroidal vascularity index changes after vitreomacular surgery[J/OL]. Acta Ophthalmol, 2018, 96(8): e950-e955[2018-05-31]. https://pubmed.ncbi.nlm.nih.gov/29855162/. DOI: 10.1111/aos.13776.
|
54. |
Kang EC, Lee KH, Koh HJ. Changes in choroidal thickness after vitrectomy for epiretinal membrane combined with vitreomacular traction[J/OL]. Acta Ophthalmol, 2017, 95(5): e393-e398[2016-05-27]. https://pubmed.ncbi.nlm.nih.gov/27229756/. DOI: 10.1111/aos.13097.
|
55. |
Yamamoto K, Iwase T, Ushida H, et al. Changes in retinochoroidal thickness after vitrectomy for proliferative diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3034-3040. DOI: 10.1167/iovs.14-15981.
|
56. |
Kang EC, Koh HJ. Effects of vitreomacular adhesion on age-related macular degeneration[J/OL]. J Ophthalmol, 2015, 2015: 865083[2015-09-03]. https://pubmed.ncbi.nlm.nih.gov/26425354/. DOI: 10.1155/2015/865083.
|
57. |
Sebag J. Vitreous: the resplendent enigma[J]. Br J Ophthalmol, 2009, 93(8): 989-991. DOI: 10.1136/bjo.2009.157313.
|
58. |
Kinoshita H, Suzuma K, Maki T, et al. Cyclic stretch and hypertension increase retinal succinate: potential mechanisms for exacerbation of ocular neovascularization by mechanical stress[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4320-4326. DOI: 10.1167/iovs.13-13839.
|
59. |
Beebe DC, Shui YB, Siegfried CJ, et al. Preserve the (intraocular) environment: the importance of maintaining normal oxygen gradients in the eye[J]. Jpn J Ophthalmol, 2014, 58(3): 225-231. DOI: 10.1007/s10384-014-0318-4.
|
60. |
Iuliano L, Fogliato G, Querques G, et al. Retinal vascular changes after vitrectomy for idiopathic epiretinal membrane: a pilot study with dynamic vessel analysis[J]. Graefe's Arch Clin Exp Ophthalmol, 2017, 255(7): 1325-1332. DOI: 10.1007/s00417-017-3643-8.
|
61. |
Borrelli E, Palmieri M, Viggiano P, et al. Photoreceptor damage in diabetic choroidopathy[J]. Retina, 2020, 40(6): 1062-1069. DOI: 10.1097/IAE.0000000000002538.
|
62. |
Torabi H, Saberi Isfeedvajani M, Ramezani M, et al. Choroidal thickness and hemoglobin A1c levels in patients with type 2 diabetes mellitus[J]. J Ophthalmic Vis Res, 2019, 14(3): 285-290. DOI: 10.18502/jovr.v14i3.4784.
|
63. |
Singh SR, Invernizzi A, Rasheed MA, et al. Wide-field choroidal vascularity in healthy eyes[J]. Am J Ophthalmol, 2018, 193: 100-105. DOI: 10.1016/j.ajo.2018.06.016.
|
64. |
Ruiz-Medrano J, Ruiz-Moreno JM, Goud A, et al. Age-related changes in choroidal vascular density of healthy subjects based on image binarization of swept-source optical coherence tomography[J]. Retina, 2018, 38(3): 508-515. DOI: 10.1097/IAE.0000000000001571.
|
65. |
Wei X, Kumar S, Ding J, et al. Choroidal structural changes in smokers measured using choroidal vascularity index[J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1316-1320. DOI: 10.1167/iovs.18-25764.
|
66. |
Aşıkgarip N, Temel E, Kıvrak A, et al. Choroidal structural changes and choroidal vascularity index in patients with systemic hypertension[J]. Eur J Ophthalmol, 2022, 32(4): 2427-2432. DOI: 10.1177/11206721211035615.
|
67. |
Agarwal A, Saini A, Mahajan S, et al. Effect of weight loss on the retinochoroidal structural alterations among patients with exogenous obesity[J/OL]. PLoS One, 2020, 15(7): e0235926[2020-07-09]. https://pubmed.ncbi.nlm.nih.gov/32645116/. DOI: 10.1371/journal.pone.0235926.
|