1. |
田芳, 东莉洁, 吉洁, 等. 多聚嘧啶序列结合蛋白相关剪接因子对视网膜血管内皮细胞IGF-1/VEGF信号通路的抑制作用[J]. 中华实验眼科杂志, 2016, 34(1): 11-16. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.003.Tian F, Dong LJ, Ji J, et al. Inhibition of PTB-associated splicing factor on IGF-1/VEGF signaling pathway in retinal vascular endothelial cells[J]. Chin J Exp Ophthalmol, 2016, 34(1): 11-16. DOI: 10.3760/cma.j.issn.2095-0160.2016.01.003.
|
2. |
Qin Y, Zhang J, Babapoor-Farrokhran S, et al. PAI-1 is a vascular cell-specific HIF-2-dependent angiogenic factor that promotes retinal neovascularization in diabetic patients[J/OL]. Sci Adv, 2022, 8(9): 1896[2022-03-04]. https://pubmed.ncbi.nlm.nih.gov/35235351/. DOI: 10.1126/sciadv.abm1896.
|
3. |
黄亮瑜, 柯屹峰, 林婷婷, 等. 慢病毒介导聚嘧啶束结合蛋白相关剪接因子对氧诱导视网膜病变小鼠视网膜新生血管的抑制作用[J]. 中华眼底病杂志, 2020, 36(1): 53-59. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.012.Huang LY, Ke YF, Lin TT, et al. Lentivirus-mediated polypyrimidine bundle binding protein-associated splicing factor inhibits retinal neovascularization in mice of oxygen-induced retinopathy[J]. Chin J Ocul Fundus Dis, 2020, 36(1): 53-59. DOI: 10.3760/cma.j.issn.1005-1015.2020.01.012.
|
4. |
Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy[J]. J Clin Endocrinol Metab, 2020, 105(11): 3404-3415. DOI: 10.1210/clinem/dgaa538.
|
5. |
Rojo Arias JE, Englmaier VE, Jászai Jl. VEGF-Trap modulates retinal inflammation in the murine oxygen-induced retinopathy (OIR) model[J]. Biomedicines, 2022, 10(2): 201. DOI: 10.3390/biomedicines10020201.
|
6. |
Gurzu S, Kobori L, Fodor D, et al. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review[J/OL]. Biomed Res Int, 2019, 2019: 2962580[2019-09-29]. https://pubmed.ncbi.nlm.nih.gov/31781608/. DOI: 10.1155/2019/2962580.
|
7. |
Zhang J, Li R, Liu Q, et al. SB431542-loaded liposomes alleviate liver fibrosis by suppressing TGF-β signaling[J]. Mol Pharm, 2020, 17(11): 4152-4162. DOI: 10.1021/acs.molpharmaceut.0c00633.
|
8. |
Li Y, Zhu H, Wei X, et al. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition[J]. Am J Transl Res, 2017, 9(2): 591-600.
|
9. |
Gong W, Sun B, Zhao X, et al. Nodal signaling promotes vasculogenic mimicry formation in breast cancer via the Smad2/3 pathway[J]. Oncotarget, 2016, 7(43): 70152-70167. DOI: 10.18632/oncotarget.12161.
|
10. |
Dong L, Li W, Lin T, et al. PSF functions as a repressor of hypoxia-induced angiogenesis by promoting mitochondrial function[J]. Cell Commun Signal, 2021, 19(1): 14. DOI: 10.1186/s12964-020-00684-w.
|
11. |
Teng H, Hong Y, Cao J, et al. Senescence marker protein30 protects lens epithelial cells against oxidative damage by restoring mitochondrial function[J]. Bioengineered, 2022, 13(5): 12955-12971. DOI: 10.1080/21655979.2022.2079270.
|
12. |
Liu K, Gao X, Hu C, et al. Capsaicin ameliorates diabetic retinopathy by inhibiting poldip2-induced oxidative stress[J/OL]. Redox Biol, 2022, 56: 102460[2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/36088760/. DOI: 10.1016/j.redox.2022.102460.
|
13. |
Xing X, Huang L, Lv Y, et al. DL-3-n-butylphthalide protected retinal Müller cells dysfunction from oxidative stress[J]. Curr Eye Res, 2019, 44(10): 1112-1120. DOI: 10.1080/02713683.2019.1624777.
|
14. |
Xu H, Yang B, Ren Z, et al. MiR-429 negatively regulates the progression of hypoxia-induced retinal neovascularization by the HPSE-VEGF pathway[J/OL]. Exp Eye Res, 2022, 223: 109196[2022-07-22]. https://pubmed.ncbi.nlm.nih.gov/35872179/. DOI: 10.1016/j.exer.2022.109196.
|
15. |
Dong L, Zhang Z, Liu X, et al. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy[J]. J Mol Med (Berl), 2021, 99(2): 225-240. DOI: 10.1007/s00109-020-01995-8.
|
16. |
Peng D, Fu M, Wang M, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1): 104. DOI: 10.1186/s12943-022-01569-x.
|
17. |
Zhang L, Wei W, Ai X, et al. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway[J/OL]. Cell Death Dis, 2021, 12(11): 1068[2021-11-09]. https://pubmed.ncbi.nlm.nih.gov/34753919/. DOI: 10.1038/s41419-021-04363-7.
|
18. |
Busse A, Keilholz U. Role of TGF-β in melanoma[J]. Curr Pharm Biotechnol, 2011, 12(12): 2165-2175. DOI: 10.2174/1389201117 98808437.
|
19. |
Yu WK, Hwang WL, Wang YC, et al. Curcumin suppresses TGF-β1-induced myofibroblast differentiation and attenuates angiogenic activity of orbital fibroblasts[J/OL]. Int J Mol Sci, 2021, 22(13): 6829[2021-06-25]. https://pubmed.ncbi.nlm.nih.gov/34202024/. DOI: 10.3390/ijms22136829.
|
20. |
邢小丽, 黄亮瑜, 张哲, 等. 丁基苯酞对H2O2诱导下视网膜色素上皮细胞凋亡的保护作用[J]. 中华眼底病杂志, 2019, 35(5): 480-487. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.Xing XL, Huang LY, Zhang Z, et al. Effects of butylphthalide on hydrogen peroxide induced retinal pigment epithelial cells injury[J]. Chin J Ocul Fundus Dis, 2019, 35(5): 480-487. DOI: 10.3760/cma.j.issn.1005-1015.2019.05.011.
|
21. |
Yadav H, Quijano C, Kamaraju AK, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling[J]. Cell Metab, 2011, 14(1): 67-79. DOI: 10.1016/j.cmet.2011.04.013.
|
22. |
Hua W, Ten Dijke P, Kostidis S, et al. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer[J]. Cell Mol Life Sci, 2020, 77(11): 2103-2123. DOI: 10.1007/s00018-019-03398-6.
|
23. |
Shu DY, Butcher ER, Saint-Geniez M. Suppression of PGC-1α drives metabolic dysfunction in TGFβ2-induced EMT of retinal pigment epithelial cells[J/OL]. Int J Mol Sci, 2021, 22(9): 4701[2021-04-29]. https://pubmed.ncbi.nlm.nih.gov/33946753/. DOI: 10.3390/ijms22094701.
|