1. |
Kanda P, Gupta A, Gottlieb C, et al. Pathophysiology of central serous chorioretinopathy: a literature review with quality assessment[J]. Eye (Lond), 2022, 36(5): 941-962. DOI: 10.1038/s41433-021-01808-3.
|
2. |
Zarnegar A, Ong J, Matsyaraja T, et al. Pathomechanisms in central serous chorioretinopathy: a recent update[J]. Int J Retina Vitreous, 2023, 9(1): 3. DOI: 10.1186/s40942-023-00443-2.
|
3. |
Yamashiro K, Hosoda Y, Miyake M, et al. Characteristics of pachychoroid diseases and age-related macular degeneration: multimodal imaging and genetic backgrounds[J]. J Clin Med, 2020, 9(7): 2034. DOI: 10.3390/jcm9072034.
|
4. |
Spaide RF, Hall L, Haas A, et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy[J]. Retina, 1996, 16(3): 203-213. DOI: 10.1097/00006982-199616030-00004.
|
5. |
Klufas MA, Yannuzzi NA, Pang CE, et al. Feasibility and clinical utility of ultra-widefield indocyanine green angiography[J]. Retina, 2015, 35(3): 508-520. DOI: 10.1097/IAE.0000000000000318.
|
6. |
Hiroe T, Kishi S. Dilatation of asymmetric vortex vein in central serous chorioretinopathy[J]. Ophthalmol Retina, 2018, 2(2): 152-161. DOI: 10.1016/j.oret.2017.05.013.
|
7. |
Matsumoto H, Kishi S, Mukai R, et al. Remodeling of macular vortex veins in pachychoroid neovasculopathy[J]. Sci Rep, 2019, 9(1): 14689. DOI: 10.1038/s41598-019-51268-9.
|
8. |
Matsumoto H, Hoshino J, Mukai R, et al. Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases[J]. Ophthalmol Retina, 2020, 4(9): 938-945. DOI: 10.1016/j.oret.2020.03.024.
|
9. |
Zeng Q, Yao Y, Tu S, et al. Quantitative analysis of choroidal vasculature in central serous chorioretinopathy using ultra-widefield swept-source optical coherence tomography angiography[J]. Sci Rep, 2022, 12(1): 18427. DOI: 10.1038/s41598-022-23389-1.
|
10. |
Zeng Q, Luo L, Yao Y, et al. Three-dimensional choroidal vascularity index in central serous chorioretinopathy using ultra-widefield swept-source optical coherence tomography angiography [J/OL]. Front Med (Lausanne), 2022, 9: 967369[2022-09-07]. https://europepmc.org/article/MED/36160148. DOI:10.3389/fmed.2022.967369.
|
11. |
Yang J, Wang E, Yuan M, et al. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(2): 241-247. DOI: 10.1007/s00417-019-04524-7.
|
12. |
Ruiz-Moreno JM, Gutierrez-Bonet R, Chandra A, et al. Choroidal vascularity index versus choroidal thickness as biomarkers of acute central serous chorioretinopathy[J]. Ophthalmic Res, 2023, 66(1): 627-635. DOI: 10.1159/000529474.
|
13. |
Chen G, Tzekov R, Li W, et al. Subfoveal choroidal thickness in central serous chorioretinopathy: a meta-analysis[J/OL]. PLoS One, 2017, 12(1): e0169152[2017-01-11]. https://europepmc.org/abstract/MED/28076442. DOI: 10.1371/journal.pone.0169152.
|
14. |
Maruko I, Iida T, Sugano Y, et al. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy[J]. Ophthalmology, 2010, 117(9): 1792-1799. DOI: 10.1016/j.ophtha.2010.01.023.
|
15. |
Li M, Qu J, Liang Z, et al. Risk factors of persistent subretinal fluid after half-dose photodynamic therapy for treatment-naïve central serous chorioretinopathy[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(7): 2175-2182. DOI: 10.1007/s00417-021-05531-3.
|
16. |
Kaderli ST, Karalezli A, Kaderli A, et al. Evaluation of the choroidal vascularity index after subthreshold yellow laser treatment in the patients with chronic central serous chorioretinopathy[J]. Eye (Lond), 2022, 36(9): 1826-1831. DOI: 10.1038/s41433-022-02090-7.
|
17. |
Kishi S, Matsumoto H. A new insight into pachychoroid diseases: remodeling of choroidal vasculature[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(11): 3405-3417. DOI: 10.1007/s00417-022-05687-6.
|
18. |
Ho M, Lai FHP, Ng DSC, et al. Analysis of choriocapillaris perfusion and choroidal layer changes in patients with chronic central serous chorioretinopathy randomised to micropulse laser or photodynamic therapy[J]. Br J Ophthalmol, 2021, 105(4): 555-560. DOI: 10.1136/bjophthalmol-2020-316076.
|
19. |
Cennamo G, Montorio D, Comune C, et al. Study of vessel density by optical coherence tomography angiography in patients with central serous chorioretinopathy after low-fluence photodynamic therapy[J/OL]. Photodiagnosis Photodyn Ther, 2020, 30: 101742[2020-03-18]. https://linkinghub.elsevier.com/retrieve/pii/S1572-1000(20)30095-8. DOI: 10.1016/j.pdpdt.2020.101742.
|
20. |
Brinks J, van Dijk EHC, Meijer OC, et al. Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities[J]. Acta Ophthalmol, 2022, 100(8): 946-959. DOI: 10.1111/aos.15112.
|
21. |
Reich M, Böhringer D, Cakir B, et al. Longitudinal analysis of the choriocapillaris using optical coherence tomography angiography reveals subretinal fluid as a substantial confounder in patients with acute central serous chorioretinopathy[J]. Ophthalmol Ther, 2019, 8(4): 599-610. DOI: 10.1007/s40123-019-00218-9.
|
22. |
Reich M, Boehringer D, Rothaus K, et al. Swept-source optical coherence tomography angiography alleviates shadowing artifacts caused by subretinal fluid[J]. Int Ophthalmol, 2020, 40(8): 2007-2016. DOI: 10.1007/s10792-020-01376-7.
|
23. |
Funatsu R, Sonoda S, Terasaki H, et al. Choroidal morphologic features in central serous chorioretinopathy using ultra-widefield optical coherence tomography[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(4): 971-979. DOI: 10.1007/s00417-022-05905-1.
|
24. |
Borrelli E, Zuccaro B, Zucchiatti I, et al. Optical coherence tomography parameters as predictors of treatment response to eplerenone in central serous chorioretinopathy[J]. J Clin Med, 2019, 8(9): 1271. DOI: 10.3390/jcm8091271.
|