1. |
Arrigo A, Bandello F. Molecular features of classic retinal drugs, retinal therapeutic targets and emerging treatments[J]. Pharmaceutics, 2021, 13(7): 1102. DOI: 10.3390/pharmaceutics13071102.
|
2. |
Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors[J/OL]. Cold Spring Harb Perspect Med, 2012, 2(7): a006502[2012-07-01]. https://europepmc.org/abstract/MED/22762016. DOI: 10.1101/cshperspect.a006502.
|
3. |
Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355(14): 1419-1431. DOI: 10.1056/NEJMoa054481.
|
4. |
Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355(14): 1432-1444. DOI: 10.1056/NEJMoa062655.
|
5. |
Santhakumaran S, Salimi A, Brunetti VC, et al. Efficacy and safety of aflibercept therapy for diabetic macular edema: a systematic review and meta-analysis[J]. J Curr Ophthalmol, 2022, 34(2): 133-147. DOI: 10.4103/joco.joco_308_21.
|
6. |
Wykoff CC, Ou WC, Croft DE, et al. Neovascular age-related macular degeneration management in the third year: final results from the TREX-AMD randomised trial[J]. Br J Ophthalmol, 2018, 102(4): 460-464. DOI10.1136/bjophthalmol-2017-310822.
|
7. |
Dugel PU, Singh RP, Koh A, et al. HAWK and HARRIER: ninety-six-week outcomes from the phase 3 trials of brolucizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2021, 128(1): 89-99. DOI: 10.1016/j.ophtha.2020.06.028.
|
8. |
Rodrigues GA, Mason M, Christie LA, et al. Functional characterization of Abicipar-Pegol, an anti-VEGF DARPin therapeutic that potently inhibits angiogenesis and vascular permeability[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5836-5846. DOI: 10.1167/iovs.18-25307.
|
9. |
Kunimoto D, Yoon YH, Wykoff CC, et al. Efficacy and safety of abicipar in neovascular age-related macular degeneration 52-week results of phase 3 randomized controlled study[J]. Ophthalmology, 2020, 127(10): 1331-1344. DOI: 10.1016/j.ophtha.2020.03.035.
|
10. |
Seah I, Zhao X, Lin Q, et al. Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases[J]. Eye, 2020, 34(8): 1341-1356. DOI: 10.1038/s41433-020-0770-y.
|
11. |
Beaulieu WT, Glassman AR. Patient-reported outcome measures in a clinical trial of the port delivery system with ranibizumab comment[J]. JAMA Ophthalmol, 2022, 140(8): 778-779. DOI: 10.1001/jamaophthalmol.2022.2133.
|
12. |
Wykoff CC, Abreu F, Adamis AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials[J]. The Lancet, 2022, 399(10326): 741-755. DOI: 10.1016/S0140-6736(22)00018-6.
|
13. |
Rathi C, Meibohm B. Clinical pharmacology of bispecific antibody constructs[J]. J Clin Pharmacol, 2015, 55(3): S21-S28. DOI: 10.1002/jcph.445.
|
14. |
Giddabasappa A, Lalwani K, Norberg R, et al. Axitinib inhibits retinal and choroidal neovascularization in in vitro and in vivo models[J]. Exp Eye Res, 2016, 145: 373-379. DOI: 10.1016/j.exer.2016.02.010.
|
15. |
Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited[J]. Prog Retin Eye Res, 2010, 29(2): 95-112. DOI: 10.1016/j.preteyeres.2009.11.003.
|
16. |
Lechner J, Chen M, Hogg RE, et al. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration[J]. Immun Ageing, 2016, 13: 4. DOI: 10.1186/s12979-016-0060-5.
|
17. |
Patel SS, Lally DR, Hsu J, et al. Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial[J/OL]. Eye (Lond), 2023, 2023: E1[2023-03-24]. https://doi.org/10.1038/s41433-023-02497-w. DOI:10.1038/s41433-023-02497-w. [published online ahead of print].
|
18. |
Szymanska M, Mahmood D, Yap TE, et al. Recent advancements in the medical treatment of diabetic retinal disease[J]. Int J Mol Sci, 2021, 22(17): 9441. DOI: 10.3390/ijms22179441.
|
19. |
Chawan-Saad J, Wu M, Wu A, et al. Corticosteroids for diabetic macular edema[J]. Taiwan J Ophthalmol, 2019, 9(4): 233-242. DOI: 10.4103/tjo.tjo_68_19.
|
20. |
Fung AT, Tran T, Lim LL, et al. Local delivery of corticosteroids in clinical ophthalmology: a review[J]. Clin Exp Ophthalmol, 2020, 48(3): 366-401. DOI: 10.1111/ceo.13702.
|
21. |
Mansoor S, Kuppermann BD, Kenney MC, et al. Intraocular sustained-release delivery systems for triamcinolone acetonide[J]. Pharm Res, 2009, 26(4): 770-784. DOI: 10.1007/s11095-008-9812-z.
|
22. |
Cantrill HL, Waltman SR, Palmberg PF, et al. In vitro determination of relative corticosteroid potency[J]. J Clin Endocrinol Metab, 1975, 40(6): 1073-1077. DOI: 10.1210/jcem-40-6-1073.
|
23. |
Gan IM, Ugahary LC, van Dissel JT, et al. Effect of intravitreal dexamethasone on vitreous vancomycin concentrations in patients with suspected postoperative bacterial endophthalmitis[J]. Graefe’s Arch Clin Exp Ophthalmol, 2005, 243(11): 1186-1189. DOI: 10.1007/s00417-005-1182-1.
|
24. |
Singer MA, Boyer DS, Williams S, et al. "Phase 2 randomized study (Orion-1) of a novel, biodegradable dexamethasone implant (AR-1105) for the treatment of macular edema due to central or branch retinal vein occlusion[J]. Retina, 2023, 43(1): 25-33. DOI: 10.1097/iae.0000000000003632.
|
25. |
Cabrera M, Yeh S, Albini TA, et al. Sustained-release corticosteroid options[J/OL]. J Ophthalmol, 2014, 2014: 164692[2014-07-23]. https://europepmc.org/abstract/MED/25140246. DOI: 10.1155/2014/164692.
|
26. |
Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents[J]. Retina, 2009, 29(7): 875-912. DOI: 10.1097/IAE.0b013e3181a94f01.
|
27. |
Kim HM, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives[J]. Pharmaceutics, 2021, 13(1): 108. DOI: 10.3390/pharmaceutics13010108.
|
28. |
Journée-de Korver JG, Oosterhuis JA, de Wolff-Rouendaal D, et al. Histopathological findings in human choroidal melanomas after transpupillary thermotherapy[J]. Br J Ophthalmol, 1997, 81(3): 234-239. DOI: 10.1136/bjo.81.3.234.
|
29. |
Moorman CM, Hamilton AM. Clinical applications of the microPulse diode laser[J]. Eye, 1999, 13(Pt 2): 145-150. DOI: 10.1038/eye.1999.41.
|
30. |
Lois N, Campbell C, Waugh N, et al. Diabetic macular edema and diode subthreshold micropulse laser a randomized double-masked noninferiority clinical trial[J]. Ophthalmology, 2023, 130(1): 14-27. DOI: 10.1016/j.ophtha.2022.08.012.
|
31. |
Lavinsky D, Wang J, Huie P, et al. Nondamaging retinal laser therapy: rationale and applications to the macula[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2488-2500. DOI: 10.1167/iovs.15-18981.
|
32. |
Li Z, Song Y, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. DOI: 10.1007/s12013-015-0675-8.
|
33. |
Stannard C, Sauerwein W, Maree G, et al. Radiotherapy for ocular tumours[J]. Eye, 2013, 27(2): 119-127. DOI: 10.1038/eye.2012.241.
|
34. |
Li SY, Liu Y, Wang L, et al. A phase Ⅰ clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years' follow-up[J/OL]. Cell Prolif, 2021, 54(9): e13100[2021-08-04]. https://europepmc.org/abstract/MED/34347352. DOI: 10.1111/cpr.13100.
|
35. |
Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients[J]. Stem Cell Res Ther, 2017, 8(1): 209. DOI: 10.1186/s13287-017-0661-8.
|
36. |
Iraha S, Tu HY, Yamasaki S, et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation[J]. Stem Cell Reports, 2018, 10(3): 1059-1074. DOI: 10.1016/j.stemcr.2018.01.032.
|
37. |
Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice[J]. Stem Cell Reports, 2014, 2(5): 662-674. DOI: 10.1016/j.stemcr.2014.03.011.
|
38. |
Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials[J]. Cell Death Dis, 2020, 11(9): 793. DOI: 10.1038/s41419-020-02955-3.
|
39. |
Chaudhry GR, Fecek C, Lai MM, et al. Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model[J]. Stem Cells Dev, 2009, 18(2): 247-258. DOI: 10.1089/scd.2008.0057.
|
40. |
Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[J]. N Engl J Med, 2015, 372(20): 1887-1897. DOI: 10.1056/NEJMoa1414221.
|
41. |
Botto C, Rucli M, Tekinsoy MD, et al. Early and late stage gene therapy interventions for inherited retinal degenerations[J/OL]. Prog Retin Eye Res, 2022, 86: 100975[2021-05-29]. https://linkinghub.elsevier.com/retrieve/pii/S1350-9462(21)00036-7. DOI: 10.1016/j.preteyeres.2021.100975.
|
42. |
Kumaran N, Michaelides M, Smith AJ, et al. Retinal gene therapy[J]. Br Med Bull, 2018, 126(1): 13-25. DOI: 10.1093/bmb/ldy005.
|
43. |
Corydon TJ. Antiangiogenic eye gene therapy[J]. Hum Gene Ther, 2015, 26(8): 525-537. DOI: 10.1089/hum.2015.064.
|