1. |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. DOI: 10.1016/j.ophtha.2016.01.006.
|
2. |
Resnikoff S, Jonas JB, Friedman D, et al. Myopia-a 21st century public health issue[J/OL]. Invest Ophthalmol Vis Sci, 2019, 60(6): 1888[2019-02-28]. https://pubmed.ncbi.nlm.nih.gov/30817824/. DOI: 10.1167/iovs.18-25983.
|
3. |
汪宇涵, 乔利亚. 后巩膜加固术治疗病理性近视眼的研究进展[J]. 中华眼科杂志, 2021, 57(12): 852-857. DOI: 10.3760/cma.j.cn112142-20210707-00324.Wang YH, Qiao LY. Analysis of the treatment effect of posterior scleral reinforcement on pathological myopia[J]. Chin J Ophthalmol, 2021, 57(12): 852-857. DOI: 10.3760/cma.j.cn112142-20210707-00324.
|
4. |
徐玉珊, 宋彦铮, 张丰菊. 巩膜胶原交联术防控近视研究的新进展[J]. 中国科学(生命科学), 2022, 52(7): 1076-1088. DOI: 10.1360/SSV-2021-0078.Xu YS, Song YZ, Zhang FJ. Advances in preventing myopia by scleral collagen crosslinking[J]. Sci Sin Vitae, 2022, 52(7): 1076-1088. DOI: 10.1360/SSV-2021-0078.
|
5. |
Jiang B, Wu ZY, Zhu ZC, et al. Expression and role of specificity protein 1 in the sclera remodeling of experimental myopia in guinea pigs[J]. Int J Ophthalmol, 2017, 10(4): 550-554. DOI: 10.18240/ijo.2017.04.08.
|
6. |
Liu YX, Sun Y. MMP-2 participates in the sclera of guinea pig with form-deprivation myopia via IGF-1/STAT3 pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(9): 2541-2548. DOI: 10.26355/eurrev_201805_14945.
|
7. |
She JM, Li B, Li T, et al. Modulation of the ERK1/2-MMP-2 pathway in the sclera of guinea pigs following induction of myopia by flickering light[J]. Exp Ther Med, 2021, 21(4): 371. DOI: 10.3892/etm.2021.9802.
|
8. |
Liang Y, Song Y, Zhang F, et al. Effect of a single nucleotide polymorphism in theLAMA1 promoter region on transcriptional activity: implication for pathological myopia[J]. Curr Eye Res, 2016, 41(10): 1379-1386. DOI: 10.3109/02713683.2015.1118129.
|
9. |
Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia[J]. Prog Retin Eye Res, 2019, 70: 99-109. DOI: 10.1016/j.preteyeres.2018.12.001.
|
10. |
Wu D, Lim DK, Lim BXH, et al. Corneal cross-linking: the evolution of treatment for corneal diseases[J/OL]. Front Pharmacol, 2021, 12: 686630[2021-07-19]. https://pubmed.ncbi.nlm.nih.gov/34349648/. DOI: 10.3389/fphar.2021.686630.
|
11. |
林晓, 周浩. 巩膜胶原交联术在近视中的研究进展[J]. 中国眼耳鼻喉科杂志, 2018, 18(40): 278-281. DOI: 10.14166/j.issn.1671-2420.2018.04.019.Lin X, Zhou H. Research advances of scleral collagen cross-linking techniques in prevention of myopia[J]. Chin J Ophthalmol and Otorhinolaryngol, 2018, 18(40): 278-281. DOI: 10.14166/j.issn.1671-2420.2018.04.019.
|
12. |
Wollensak G, Spoerl E. Collagen crosslinking of human and porcine sclera[J]. J Cataract Refract Sur, 2004, 30(3): 689-695. DOI: 10.1016/j.jcrs.2003.11.032.
|
13. |
Han D, He MN, Zhu Y, et al. Protective effects of riboflavin-UVA-mediated posterior sclera collagen cross-linking in a guinea pig model of form-deprived myopia[J]. Int J Ophthalmol, 2021, 14(3): 333-340. DOI: 10.18240/ijo.2021.03.01.
|
14. |
蔡紫妍, 刘可, 段宣初. 巩膜交联在病理性近视和青光眼治疗中的应用进展[J]. 中华实验眼科杂志, 2021, 39(2): 1109-1114. DOI: 10.3760/cma.j.cn115989-20191107-00485.Cai ZY, Liu K, Duan XC, Progress of scleral cross-linking in the treatment of pathological myopia and glaucoma[J]. Chin J Exp Ophthalmol, 2021, 39(12): 1109-1114. DOI: 10.3760/cma.j.cn115989-20191107-00485.
|
15. |
Chen B, Li X, Sun Y, et al. Study of the effects of rabbit scleral fibroblasts on cellular biomechanical properties and MMP-2 expression using two modes of riboflavin/ultraviolet A wave collagen cross-linking[J/OL]. Exp Eye Res, 2021, 212: 108695[2021-07-03]. https://pubmed.ncbi.nlm.nih.gov/34228966/. DOI: 10.1016/j.exer.2021.108695.
|
16. |
Zhu SQ, Pan AP, Zheng LY, et al. Posterior scleral reinforcement using genipin-crosslinked sclera for macular hole retinal detachment in highly myopic eyes[J]. Br J Ophthalmol, 2018, 102(12): 1701-1704. DOI: 10.1136/bjophthalmol-2017-311340.
|
17. |
明春秀, 刘丽梅, 张少斌. 影响核黄素-紫外线A巩膜胶原交联治疗病理性近视的主要因素[J]. 国际眼科纵览, 2019, 43(3): 180-183. DOI: 10.3760/cma.j.issn.1673-5803.2019.03.008.Ming CX, Liu LM, Zhang SB. Main factors affecting riboflavin-UVA scleral collagen cross-linking for pathological myopia[J]. Int Rev Ophthmol, 2019, 43(3): 180-183. DOI: 10.3760/cma.j.issn.1673-5803.2019.03.008.
|
18. |
Wollensak G, Iomdina E, Dittert DD, et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA[J]. Acta Ophthalmol Scand, 2005, 83(4): 477-482. DOI: 10.1111/j.1600-0420.2005.00447.x.
|
19. |
张亚丽, 李志伟, 牟国营, 等. 核黄素-紫外线A诱导的胶原交联对兔和人巩膜生物力学性能的影响[J]. 中华眼视光学与视觉科学杂志, 2014, 16(5): 279-281. DOI: 10.3760/cma.J.Issn.1674-845X.2014.05.005.Zhang YL, Li ZW, Mu GY, et al. Comparison of biomechanical properties of rabbit and human sclera after riboflavin/ultraviolet A collagen crosslinking[J]. Chin J Ophom Ophthalmol Vis Sci, 2014, 16(5): 279-281. DOI: 10.3760/cma.J.Issn.1674-845X.2014.05.005.
|
20. |
Zhang YL, Zou CX, Liu L, et al. Effect of irradiation time on riboflavin-ultraviolet-A collagen crosslinking in rabbit sclera[J]. J Cataract Refract Surg, 2013, 39(8): 1184-1189. DOI: 10.1016/j.jcrs.2013.02.055.
|
21. |
Dotan A, Kremer, Orly GO, et al. Scleral cross-linking using riboflavin and ultraviolet-A radiation for prevention of axial myopia in a rabbit model[J/OL]. J Vis Exp, 2016, 1(110): e53201[2016-04-03]. https://pubmed.ncbi.nlm.nih.gov/27077753/. DOI: 10.3791/53201.
|
22. |
Iseli HP, Spoerl E, Wiedemann P, et al. Efficacy and safety of blue-light scleral cross-linking[J]. J Refract Surg, 2008, 24(7): S752-755. DOI: 10.3928/1081597X-20080901-21.
|
23. |
Iseli HP, Körber N, Karl A, et al. Damage threshold in adult rabbit eyes after scleralcross-linking by riboflavin/blue light application[J]. Exp Eye Res, 2015, 139: 37-47. DOI: 10.1016/j.exer.2015.07.005.
|
24. |
Schuldt C, Kar A, Korber N, et al. Dose-dependent collagen cross-linking of rabbit scleral tissue by blue light and riboflavin treatment probed by dynamic shear rheology[J/OL]. Acta Ophthalmol, 2015, 93(5): e328-336[2014-12-16]. https://pubmed.ncbi.nlm.nih.gov/25516112/. DOI: 10.1111/aos.12621.
|
25. |
Zhang M, Zou Y, Zhang F, et al. Efficacy of blue-light cross-linking on human scleral reinforcement[J]. Optom Vis Sci, 2015, 92(8): 873-878. DOI: 10.1097/OPX.0000000000000642.
|
26. |
Karl A, Makarov FN, Koch C. The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities[J]. Graefe's Arch Clin Exp Ophthalmol, 2016, 254(8): 1567-1577. DOI: 10.1007/s00417-016-3393-z.
|
27. |
张学敏, 赵旭, 张丰菊, 等. 核黄素在巩膜组织内渗透性的实验研究[J]. 中华眼科杂志, 2015, 51(6): 450-454. DOI: 10.3760/cma.j.issn.0412-4081.2015.06.013.Zhang XM, Zhao X, Zhang FJ, et al. Investigation on the concentration of riboflavin in sclera tissue[J]. Chin J Ophthalmol, 2015, 51(6): 450-454. DOI: 10.3760/cma.j.issn.0412-4081.2015.06.013.
|
28. |
邹迎, 张淼, 张丰菊. 不同浓度核黄素-蓝光交联对兔眼巩膜组织生物力学的影响[J]. 中华眼视光学与视觉科学杂志, 2017, 19(1): 9-13. DOI: 10.3760/cma.j.issn.1674-845X.2017.01.003.Zou Y, Zhang M, Zhang FJ, Investigation of the biomechanics of blue-fight cross-linking on rabbit scleral tissue with different concentrations of riboflavin[J]. Chin J Ophom Ophthalmol Vis Sci, 2017, 19(1): 9-13. DOI: 10.3760/cma.j.issn.1674-845X.2017.01.003.
|
29. |
Li Y, Liu C, Sun M. Ocular safety evaluation of blue light scleral cross-linking invivo in rhesus macaques[J]. Graefe's Arch Clin Exp Ophthalmol, 2019, 257(7): 1435-1442. DOI: 10.1007/s00417-019-04346-7.
|
30. |
王靖, 李晓娜, 高志鹏, 等. 寄生离子对离子导入巩膜交联术核黄素渗透性及交联效果的影响[J]. 生物医学工程学杂志, 2021, 38(5): 869-876. DOI: 10.7507/1001-5515.202104034.Wang J, Li XN, Gao ZP, et al. The effect of parasitic ions on riboflavin permeabilityand cross-linking effectiveness in iontophoresis-assisted scleral cross-linking[J]. Journal of Biomedical Engineering, 2021, 38(5): 869-876. DOI: 10.7507/1001-5515.202104034.
|
31. |
徐海铭, 刘辉, 余洁, 等. 核黄素-紫外线A照射加速巩膜交联治疗豚鼠实验性近视[J]. 中华实验眼科杂志, 2018, 36(10): 767-772. DOI: 10. 3760/cma.J.issn. 2095-0160.2018.10.006.Xu HM, Liu H, Yu J, et al. Pulsed and continuous accelerated scleral cross-linking using riboflavin and ultraviolet A irradiation for the prevention of myopia progression in a guinea pig model[J]. Chin J Exp Ophthalmol, 2018, 36(10): 767-772. DOI: 10. 3760/cma. J.issn. 2095-0160.2018.10.006.
|
32. |
Xiao B, Chu YH, Wang HY, et al. Minimally invasive repetitive UVA irradiation along with riboflavin reatment increased the strength of sclera collagen cross-linking[J/OL]. J Ophthalmol, 2017, 2017: 1324012[2017-12-17]. https://pubmed.ncbi.nlm.nih.gov/29391948/. DOI: 10.1155/2017/1324012.
|
33. |
王红燕, 肖博, 楚艳华, 等. 微创核黄素-紫外线A巩膜胶原交联对巩膜生物力学强度的增强作用及安全性[J]. 中华实验眼科杂志, 2018, 36(6): 96-101. DOI: 10.3760/cma.j.issn.2095-0160.2018.02.005.Wang HY, Xiao B, Chu YH, et al. Enhancement of scleral biomechanics and safety following minimally invasive riboflavin-ultraviolet A collagen crosslinking in rabbits[J]. Chin J Exp Ophthalmol, 2018, 36(6): 96-101. DOI: 10.3760/cma.j.issn.2095-0160.2018.02.005.
|
34. |
王莹, 韩泉洪, 韩风梅, 等. 甘油醛后巩膜交联治疗豚鼠形觉剥夺性近视眼的研究[J]. 中华眼科杂志, 2014, 50(1): 51-59. DOI: 10.3760/ema.j.issn.04124081.2014.01.013.Wang Y, Han QH, Han FM, et al. Experimental study of glyceraldehyde cross-linking of posterior scleral on FDM in guinea pigs[J]. Chin J Ophthalmol, 2014, 50(1): 51-59. DOI: 10.3760/ema.j.issn.04124081.2014.01.013.
|
35. |
Lin X, Naidu RK, Dai J, et al. Scleral cross-linking using glyceraldehyde for the prevention of axial elongation in the rabbit: blocked axial elongation and altered scleral microstructure[J]. Curr Eye Res, 2019, 44(2): 162-171. DOI: 10.1080/02713683.2018.1522647.
|
36. |
吴元, 次仁琼达, 汤韵, 等. 天然生物交联剂京尼平对猪巩膜交联效果的初步研究[J]. 中国斜视与小儿眼科杂志, 2019, 27(3): 24-27. DOI: 10.969/J.ISSN.1005-328X.2019.03.007.Wu Y, Ciren QD, Tang Y, et al. Effect of genipin collagen crosslinking on porcine sclera[J]. Chinese Journal of Strabismus and Pediatric Ophthalmology, 2019, 27(3): 24-27. DOI: 10.969/J.ISSN.1005-328X.2019.03.007.
|
37. |
Wang M, Yang ZK, Liu H, et al. Genipin inhibits the scleral expression of miR-29 and MMP2 and promotes COL1A1 expression in myopic eyes of guinea pigs[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(5): 1031-1038. DOI: 10.1007/s00417- 020-04634-7.
|
38. |
Xue A, Zheng L, Tan G, et al. Genipin-crosslinked donor sclera for posterior scleralcontraction/reinforcement to fight progressive myopia[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3564-3573. DOI: 10.1167/iovs.17-23707. DOI: 10.1167/iovs.17-23707.
|
39. |
许寅聪, 陈静, 赵亚芳, 等. 京尼平和甲醛缓释体类防腐剂对活体兔巩膜交联的有效性研究[J]. 河北医药, 2020, 42(4): 494-498. DOI: 10.3969/j.issn.1002-7386.2020.04.003.Xu YC, Chen J, Zhao YF, et al. Effects of genipin and formaldehyde release agents on scleral cross-linking in living rabbits[J]. Hebei Medical Journal, 2020, 42(4): 494-498. DOI: 10.3969/j.issn.1002-7386.2020.04.003.
|
40. |
许寅聪, 仝春梅, 赵亚芳, 等. 甲醛缓释体类防腐剂对活体兔巩膜交联有效性的研究[J]. 国际眼科杂志, 2019, 19(8): 1288-1292. DOI: 10.3980/j.issn.1672-5123.2019.8.05.Xu YC, Tong CM, Zhao YF, et al. Study on the efficacy of formaldehyde sustained-release preservatives in scleral cross-linking of living rabbits[J]. Int Eye Sci, 2019, 19(8): 1288-1292. DOI: 10.3980/j.issn.1672-5123.2019.8.05.
|
41. |
Krasselt K, Frommelt C, Brunner R, et al. Various cross-linking methods inhibit thecollagenase I degradation of rabbit scleral tissue[J]. BMC Ophthalmol, 2020, 20(1): 488. DOI: 10.1186/s12886-020-01751-z.
|
42. |
Wang M, Corpuz CC. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a randomized controlled experimental study[J]. BMC Ophthalmol, 2015, 15(1): 1-7. DOI: 10.1186/s12886-015-0086-z.
|