1. |
Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290(5806): 457-465. DOI: 10.1038/290457a0.
|
2. |
Metzker ML. Sequencing technologies-the next generation[J]. Nat Rev Genet, 2010, 11(1): 31-46. DOI: 10.1038/nrg2626.
|
3. |
Stapley J, Reger J, Feulner PG, et al. Adaptation genomics: the next generation[J]. Trends Ecol Evol, 2010, 25(12): 705-712. DOI: 10.1016/j.tree.2010.09.002.
|
4. |
Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity[J]. Nat Rev Immunol, 2018, 18(1): 35-45. DOI: 10.1038/nri.2017.76.
|
5. |
Haque A, Engel J, Teichmann SA, et al. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[J]. Genome Med, 2017, 9(1): 75. DOI: 10.1186/s13073-017-0467-4.
|
6. |
Sun J, Gao L, Wang L, et al. Recent advances in single-cell analysis: encapsulation materials, analysis methods and integrative platform for microfluidic technology[J/OL]. Talanta, 2021, 234: 122671[2021-11-01]. https://pubmed.ncbi.nlm.nih.gov/34364472/. DOI: 10.1016/j.talanta.2021.122671.
|
7. |
Voigt AP, Mullin NK, Stone EM, et al. Single-cell RNA sequencing in vision research: insights into human retinal health and disease[J/OL]. Prog Retin Eye Res, 2021, 83: 100934[2020-12-28]. https://pubmed.ncbi.nlm.nih.gov/33383180/. DOI: 10.1016/j.preteyeres.2020.100934.
|
8. |
O'Koren EG, Yu C, Klingeborn M, et al. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration[J]. Immunity, 2019, 50(3): 723-737. DOI: 10.1016/j.immuni.2019.02.007.
|
9. |
许迅. 我国眼底病研究发展现状、进展和努力方向[J]. 中华眼科杂志, 2014, 50(11): 801-803. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.001.Xu X. Ocular fundus disease in China: the current situation, progression, and issues to be resolved[J]. Chin J Ophthalmol, 2014, 50(11): 801-803. DOI: 10.3760/cma.j.issn.0412-4081.2014.11.001.
|
10. |
Lai AK, Lo AC. Animal models of diabetic retinopathy: summary and comparison[J/OL]. J Diabetes Res, 2013, 2013: 106594[2013-10-27]. https://pubmed.ncbi.nlm.nih.gov/24286086/. DOI: 10.1155/2013/106594.
|
11. |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214. DOI: 10.1016/j.cell.2015.05.002.
|
12. |
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
|
13. |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
|
14. |
Li HY, Yuan Y, Fu YH, et al. Hypoxia-inducible factor-1α: a promising therapeutic target for vasculopathy in diabetic retinopathy[J/OL]. Pharmacol Res, 2020, 159: 104924[2020-05-25]. https://pubmed.ncbi.nlm.nih.gov/32464323/. DOI: 10.1016/j.phrs.2020.104924.
|
15. |
Hu Z, Mao X, Chen M, et al. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy[J]. Diabetes, 2022, 71(4): 762-773. DOI: 10.2337/db21-0551.
|
16. |
Pan WW, Lin F, Fort PE. The innate immune system in diabetic retinopathy[J/OL]. Prog Retin Eye Res, 2021, 84: 100940[2021-01-08]. https://pubmed.ncbi.nlm.nih.gov/33429059/. DOI: 10.1016/j.preteyeres.2021.100940.
|
17. |
Tsai AS, Chou HD, Ling XC, et al. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF)[J/OL]. Prog Retin Eye Res, 2022, 88: 101018[2021-11-09]. https://pubmed.ncbi.nlm.nih.gov/34763060/. DOI: 10.1016/j.preteyeres.2021.101018.
|
18. |
Simó R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37(4): 893-899. DOI: 10.2337/dc13-2002.
|
19. |
Wallsh JO, Gallemore RP. Anti-VEGF-resistant retinal diseases: a review of the latest treatment options[J/OL]. Cells, 2021, 10(5): 1049[2021-04-29]. https://pubmed.ncbi.nlm.nih.gov/33946803/. DOI: 10.3390/cells10051049.
|
20. |
Lehmann GL, Hanke-Gogokhia C, Hu Y, et al. Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid[J/OL]. J Exp Med, 2020, 217(6): e20190730[2020-06-01]. https://pubmed.ncbi.nlm.nih.gov/32196081/. DOI: 10.1084/jem.20190730.
|
21. |
Rohlenova K, Goveia J, García-Caballero M, et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis[J]. Cell Metab, 2020, 31(4): 862-877. DOI: 10.1016/j.cmet.2020.03.009.
|
22. |
Liu Z, Mao X, Yang Q, et al. Suppression of myeloid PFKFB3-driven glycolysis protects mice from choroidal neovascularization[J]. Br J Pharmacol, 2022, 179(22): 5109-5131. DOI: 10.1111/bph.15925.
|
23. |
Crespo-Garcia S, Tsuruda PR, Dejda A, et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition[J]. Cell Metab, 2021, 33(4): 818-832. DOI: 10.1016/j.cmet.2021.01.011.
|
24. |
Binet F, Cagnone G, Crespo-Garcia S, et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy[J/OL]. Science, 2020, 369(6506): eaay5356[2020-08-21]. https://pubmed.ncbi.nlm.nih.gov/32820093/. DOI: 10.1126/science.aay5356.
|
25. |
Baron CS, Barve A, Muraro MJ, et al. Cell type purification by single-cell transcriptome-trained sorting[J]. Cell, 2019, 179(2): 527-542. DOI: 10.1016/j.cell.2019.08.006.
|
26. |
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease[J]. Genome Biol, 2017, 18(1): 83. DOI: 10.1186/s13059-017-1215-1.
|
27. |
Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294): 78-82. DOI: 10.1126/science.aaf2403.
|
28. |
Rozenblatt-Rosen O, Regev A, Oberdoerffer P, et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution[J]. Cell, 2020, 181(2): 236-249. DOI: 10.1016/j.cell.2020.03.053.
|