1. |
张健, 杨波. 糖尿病视网膜病变发病机制及其药物治疗研究的进展[J]. 心血管康复医学杂志, 2016, 25(3): 339-341. DOI: 10.3969/j.issn.1008-0074.2016.03.31.Zhang J, Yang B. Research progress for pathogenesis of diabetic retinopathy and its drug treatment[J]. Chin J Cardiovasc Rehabil Med, 2016, 25(3): 339-341. DOI: 10.3969/j.issn.1008-0074.2016.03.31.
|
2. |
Bressler SB, Beaulieu WT, Glassman AR, et al. Factors associated with worsening proliferative diabetic retinopathy in eyes treated with panretinal photocoagulation or Ranibizumab[J]. Ophthalmology, 2017, 124(4): 431-439. DOI: 10.1016/j.ophtha.2016.12.005.
|
3. |
袁明霞. 糖尿病视网膜病变的早期诊断与综合防治[J]. 中国医刊, 2018, 53(4): 358-361. DOI: 10.3969/j.issn.1008-1070.2018.04.004.Yuan MX. Early diagnosis and comprehensive prevention of diabetic retinopathy[J]. Chinese Journal of Medicine, 2018, 53(4): 358-361. DOI: 10.3969/j.issn.1008-1070.2018.04.004.
|
4. |
张宝莹. 糖尿病视网膜病变的临床表现及其诊断和防治[J]. 糖尿病新世界, 2016, 19(22): 121-122. DOI: 10.16658/j.cnki.1672-4062.2016.22.121.Zhang BY. Clinical manifestations, diagnosis, prevention and treatment of diabetic retinopathy[J]. Diabetes New World, 2016, 19(22): 121-122. DOI: 10.16658/j.cnki.1672-4062.2016.22.121.
|
5. |
马晓宇, 张力, 毕燕龙. 人工智能在糖尿病视网膜病变领域的研究进展[J]. 国际眼科杂志, 2022, 22(11): 1818-1821. DOI: 10.3980/j.issn.1672-5123.2022.11.11.Ma XY, Zhang L, Bi YL. Research progress on artificial intelligence in diabetic retinopathy[J]. Int Eye Sci, 2022, 22(11): 1818-1821. DOI: 10.3980/j.issn.1672-5123.2022.11.11.
|
6. |
Farooq MS, Arooj A, Alroobaea R, et al. Untangling computer-aided diagnostic system for screening diabetic retinopathy based on deep learning techniques[J]. Sensors, 2022, 22(5): 1803. DOI: 10.3390/s22051803.
|
7. |
Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research[J]. Data, 2018, 3(3): 25. DOI: 10.3390/data3030025.
|
8. |
Chidambaram N, Vijayan D. Detection of exudates in diabetic retinopathy[J]. IEEE, 2018, 2018: 660-664. DOI: 10.1109/icacci.2018.8554923.
|
9. |
Wang H, Cao P, Yang J, et al. MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation[J]. Health Inf Sci Syst, 2023, 11(1): 10. DOI: 10.1007/s13755-022-00209-4.
|
10. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[J]. IEEE, 2016: 770-778. DOI: 10.1109/cvpr.2016.90.
|
11. |
陈人和, 赖振意, 钱育蓉. 改进的生成对抗网络图像去噪算法[J]. 计算机工程与应用, 2021, 57(5): 168-172. DOI: 10.3778/j.issn.1002-8331.2003-0336.Chen RH, Lai ZY, Qian YR. Improved image denoising generative adversarial network algorithm[J]. Comput Engin Appl, 2021, 57(5): 168-172. DOI: 10.3778/j.issn.1002-8331.2003-0336.
|
12. |
Howard AG, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. 2017, 27(7): 9. DOI: 10.48550/arXiv.1704.04861.
|
13. |
Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[J]. IEEE, 2020, 2020: 11534-11542. DOI: 10.1109/cvpr42600.2020.01155.
|
14. |
Gu Z, Cheng J, Fu H, et al. CE-Net: context encoder network for 2d medical image segmentation[J]. IEEE transactions on medical imaging, 2019, 38(10): 2281-2292. DOI: 10.1109/tmi.2019.2903562.
|
15. |
Misra D, Nalamada T, Arasanipalai AU, et al. Rotate to attend: convolutional triplet attention module[J]. IEEE, 2021, 2021: 3139-3148. DOI: 10.1109/wacv48630.2021.00318.
|
16. |
Zhang F, Li S, Deng J. Unsupervised domain adaptation with shape constraint and triple attention for joint optic disc and cup segmentation[J/OL]. Sensors, 2022, 22(22): 8748[2022-11-12]. https://pubmed.ncbi.nlm.nih.gov/36433345/. DOI: 10.3390/s22228748.
|
17. |
Oktay O, Schlemper J, Folgoc LL, et al. Attention U-net: learning where to look for the pancreas[J]. Comput Vis Pat Recog, 2018, 2018: 1. DOI: 10.48550/arXiv.1804.03999.
|
18. |
Zhou Z, Siddiquee MMR, Tajbakhsh N, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE T Med Imaging, 2019, 39(6): 1856-1867. DOI: 10.1109/tmi.2019.2959609.
|
19. |
Guo S, Li T, Kang H, et al. L-Seg: an end-to-end unified framework for multi-lesion segmentation of fundus images[J]. Neurocomputing, 2019, 349: 52-63. DOI: 10.1016/j.neucom.2019.04.019.
|
20. |
Ibtehaz N, Rahman MS. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neur Net, 2020, 121: 74-87. DOI: 10.1016/j.neunet.2019.08.025.
|
21. |
Cao H, Wang Y, Chen J, et al. Swin-unet: UNet-like pure transformer for medical image segmentation[J]. IEEE, 2022, 2022: 205-218. DOI: 10.1007/978-3-031-25066-8_9.
|
22. |
龙胜春, 胡安特, 陈芝清. 基于混合多特征的微动脉瘤检测方法[J]. 中国生物医学工程学报, 2022, 41(5): 626-630. DOI: 10.3969/j.issn.0258-8021.2022.05.012.Long SC, Hu AT, Chen ZQ. Microaneurysm detection method based on mixed multi-features[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 626-630. DOI: 10.3969/j.issn.0258-8021.2022.05.012.
|
23. |
周梦颖, 杨晓宇, 邱媛, 等. 一种眼底图像出血点的检测算法[J]. 北京生物医学工程, 2022, 41(3): 255-259. DOI: 10.3969/j.issn.1002-3208.2022.03.006.Zhou MY, Yang XY, Qiu Y, et al. Algorithm of hemorrhages in fundus images[J]. Beijing Biomedical Engineering, 2022, 41(3): 255-259. DOI: 10.3969/j.issn.1002-3208.2022.03.006.
|
24. |
Jaafar HF, Al-Libawy H, Al-Gayem QK. Automated approach for extraction of microaneurysms and hemorrhages in retinal fundus images[J]. Int J Intell Engineer Syst, 2020, 13(5): 210. DOI: 10.22266/ijies2020.1031.20.
|
25. |
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review[J/OL]. Med Image Anal, 2019, 58: 101552[2019-08-31]. https://pubmed.ncbi.nlm.nih.gov/31521965/. DOI: 10.1016/j.media.2019.101552.
|
26. |
Liu Q, Liu H, Zhao Y, et al. Dual-branch network with dual-sampling modulated dice loss for hard exudate segmentation in color fundus images[J]. IEEE J Biomed Health Inform, 2021, 26(3): 1091-1102. DOI: 10.1109/jbhi.2021.3108169.
|
27. |
Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation[J]. IEEE, 2016: 565-571. DOI: 10.1109/3DV.2016.79.
|
28. |
Shujaat M, Aslam N, Noreen I, et al. Intelligent and integrated framework for exudate detection in retinal fundus images[J]. Intell Autom Soft Co, 2021, 30(2): 663-672. DOI: 10.32604/iasc.2021.019194.
|
29. |
Han X, Zhong Y, Cao L, et al. Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification[J]. Remote Sens, 2017, 9(8): 848. DOI: 10.3390/rs9080848.
|
30. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[J]. IEEE, 2015, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
|
31. |
杨知桥, 张莹, 王新杰, 等. 改进U型网络在视网膜病变检测中的应用研究[J]. 计算机科学与探索, 2022, 16(8): 1877. DOI: 10.3778/j.issn.1673-9418.2012011.Yang ZQ, Zhang Y, Wang XJ, et al. Application research of improved U-shaped network in detection of retinopathy[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1877. DOI: 10.3778/j.issn.1673-9418.2012011.
|
32. |
Fu Y, Zhang G, Lu X, et al. RMCA U-net: hard exudates segmentation for retinal fundus images[J/OL]. Expert Syst Appl, 2023, 234: 120987[2023-08-23]. https://www.sciencedirect.com/science/article/pii/S0957417423014896?via%3Dihub. DOI: 10.1016/j.eswa.2023.120987.
|