1. |
He GH, Ma YX, Dong M, et al. Mesenchymal stem cell-derived exosomes inhibit the VEGF-A expression in human retinal vascular endothelial cells induced by high glucose[J]. Int J Ophthalmol, 2021, 14(12): 1820-1827. DOI: 10.18240/ijo.2021.12.03.
|
2. |
李梦醒, 王玉, 李真, 等. 基于miR-126-3p调控mTOR/HIF-1α信号通路探讨电针促脑缺血大鼠血管新生的机制[J]. 针刺研究, 2022, 47(9): 749-758. DOI: 10.13702/j.1000-0607.20211281.Li MX, Wang Y, Li Z, et al. Involvement of miR-126-3p via mTOR/HIF-1alpha signaling pathway in effect of electroacupuncture on angiogenesis in rats with cerebral ischemia[J]. Acupuncture Research, 2022, 47(9): 749-758. DOI: 10.13702/j.1000-0607.20211281.
|
3. |
Sanguineti R, Puddu A, Nicolo M, et al. MiR-126 mimic counteracts the increased secretion of VEGF-A induced by high glucose in ARPE-19 cells[J/OL]. J Diabetes Res, 2021, 2021: 6649222[2021-02-24]. https://pubmed.ncbi.nlm.nih.gov/33709000/. DOI: 10.1155/2021/6649222.
|
4. |
Bai Y, Bai X, Wang Z, et al. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors[J]. Exp Mol Pathol, 2011, 91(1): 471-477. DOI: 10.1016/j.yexmp.2011.04.016.
|
5. |
Martinez B, Peplow PV. MicroRNAs in laser-induced choroidal neovascularization in mice and rats: their expression and potential therapeutic targets[J]. Neural Regen Res, 2021, 16(4): 621-627. DOI: 10.4103/1673-5374.295271.
|
6. |
Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 294-303. DOI: 10.1167/iovs.18-25617.
|
7. |
Pozarowska D, Pozarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy[J]. Cent Eur J Immunol, 2016, 41(3): 311-316. DOI: 10.5114/ceji.2016.63132.
|
8. |
Osaadon P, Fagan XJ, Lifshitz T, et al. A review of anti-VEGF agents for proliferative diabetic retinopathy[J]. Eye (Lond), 2014, 28(5): 510-520. DOI: 10.1038/eye.2014.13.
|
9. |
Stepp MA, Menko AS. Immune responses to injury and their links to eye disease[J]. Transl Res, 2021, 236: 52-71. DOI: 10.1016/j.trsl.2021.05.005.
|
10. |
Rezzola S, Guerra J, Krishna CA, et al. VEGF-independent activation of Müller cells by the vitreous from proliferative diabetic retinopathy patients[J/OL]. Int J Mol Sci, 2021, 22(4): 2179[2021-02-22]. https://pubmed.ncbi.nlm.nih.gov/33671690/. DOI: 10.3390/ijms22042179.
|
11. |
Lee JW, Ko J, Ju C, et al. Hypoxia signaling in human diseases and therapeutic targets[J]. Exp Mol Med, 2019, 51(6): 1-13. DOI: 10.1038/s12276-019-0235-1.
|
12. |
Yeo EJ. Hypoxia and aging[J]. Exp Mol Med, 2019, 51(6): 1-15. DOI: 10.1038/s12276-019-0233-3.
|
13. |
Liao C, Zhang Q. Understanding the oxygen-sensing pathway and its therapeutic implications in diseases[J]. Am J Pathol, 2020, 190(8): 1584-1595. DOI: 10.1016/j.ajpath.2020.04.003.
|
14. |
Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis[J]. Front Mol Neurosci, 2011, 4: 51. DOI: 10.3389/fnmol.2011.00051.
|
15. |
Zhao B, Chen X, Li H. Protective effects of miR-126 specifically regulates Nrf2 through ischemic postconditioning on renal ischemia/reperfusion injury in mice[J]. Transplant Proc, 2020, 52(1): 392-397. DOI: 10.1016/j.transproceed.2019.09.010.
|
16. |
Plastino F, Pesce NA, Andre H. MicroRNAs and the HIF/VEGF axis in ocular neovascular diseases[J/OL]. Acta Ophthalmol, 2021, 99(8): e1255-e1262[2021-03-17]. https://pubmed.ncbi.nlm.nih.gov/33729690/. DOI: 10.1111/aos.14845.
|
17. |
Zhao Z, Sun W, Guo Z, et al. Mechanisms of lncRNA/microRNA interactions in angiogenesis[J/OL]. Life Sci, 2020, 254: 116900[2020-08-01]. https://pubmed.ncbi.nlm.nih.gov/31786194/. DOI: 10.1016/j.lfs.2019.116900.
|
18. |
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J]. Dev Cell, 2008, 15(2): 261-271. DOI: 10.1016/j.devcel.2008.07.002.
|
19. |
Bijkerk R, van Solingen C, de Boer HC, et al. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity[J]. J Am Soc Nephrol, 2014, 25(8): 1710-1722. DOI: 10.1681/ASN.2013060640.
|
20. |
Pan Q, Wang Y, Lan Q, et al. Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring microRNA-126[J/OL]. Stem Cells Int, 2019, 2019: 2831756[2019-06-02]. https://pubmed.ncbi.nlm.nih.gov/31281371/. DOI: 10.1155/2019/2831756.
|
21. |
Gao S, Gao H, Dai L, et al. MiR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1alpha[J/OL]. Exp Cell Res, 2021, 409(2): 112925[2021-12-15]. https://pubmed.ncbi.nlm.nih.gov/34785240/. DOI: 10.1016/j.yexcr.2021.112925.
|
22. |
Alhasan L. MiR-126 modulates angiogenesis in breast cancer by targeting VEGF-A-mRNA[J]. Asian Pac J Cancer Prev, 2019, 20(1): 193-197. DOI: 10.31557/APJCP.2019.20.1.193.
|
23. |
Kim BR, Yoon K, Byun HJ, et al. The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1alpha and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways[J]. Oncotarget, 2014, 5(15): 6540-6551. DOI: 10.18632/oncotarget.2119.
|
24. |
Wang F, Zhang W, Guo L, et al. Gambogic acid suppresses hypoxia-induced hypoxia-inducible factor-1alpha/vascular endothelial growth factor expression via inhibiting phosphatidylinositol 3-kinase/Akt/mammalian target protein of rapamycin pathway in multiple myeloma cells[J]. Cancer Sci, 2014, 105(8): 1063-1070. DOI: 10.1111/cas.12458.
|
25. |
Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways[J]. Cancer Metab, 2014, 2(1): 3. DOI: 10.1186/2049-3002-2-3.
|
26. |
Wei J, Jiang H, Gao H, et al. Blocking mammalian target of rapamycin (mTOR) attenuates HIF-1alpha pathways engaged-vascular endothelial growth factor (VEGF) in diabetic retinopathy[J]. Cell Physiol Biochem, 2016, 40(6): 1570-1577. DOI: 10.1159/000453207.
|