1. |
van Schuppen SM, Talib M, Bergen AA, et al. Long-term follow-up of patients with choroideremia with scleral pits and tunnels as a novel observation[J]. Retina, 2018, 38(9): 1713-1724. DOI: 10.1097/iae.0000000000001844.
|
2. |
Heon E, Alabduljalil T, Iii DB, et al. Visual function and central retinal structure in choroideremia[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): 377-387. DOI: 10.1167/iovs.15-18421.
|
3. |
MacDonald IM, Smaoui N, Seabra MC. Choroideremia[M]//Pagon RA, Bird TD, Dolan CR, et al. Gene Reviews. Seattle WA: University of Washington, Seattle, 1993.
|
4. |
van den Hurk JA, Schwartz M, van Bokhoven H, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene[J]. Hum Mutat, 1997, 9: 110-117. DOI: 10.1002/(SICI)1098-1004(1997)9:2<110::AID-HUMU2>3.0.CO;2-D.
|
5. |
van Bokhoven H, van den Hurk JA, Bogerd L, et al. Cloning and characterization of the human choroideremia gene[J]. Hum Mol Genet, 1994, 3(7): 1041-1046. DOI: 10.1093/hmg/3.7.1041.
|
6. |
MacDonald IM, Russell L, Chan CC. Choroideremia: new findings from ocular pathology and review of recent literature[J]. Surv Ophthalmol, 2009, 54(3): 401-407. DOI: 10.1016/j.survophthal.2009.02.008.
|
7. |
Han RC, Fry LE, Kantor A, et al. Is subretinal AAV gene replacement still the only viable treatment option for choroideremia?[J]. Expert Opin Orphan Drugs, 2021, 9(1): 13-24. DOI: 10.1080/21678707.2021.1882300.
|
8. |
Zerial M, McBride H. Rab proteins as membrane organizers[J]. Nat Rev Mol Cell Biol, 2001, 2(2): 107-117. DOI: 10.1038/35052055.
|
9. |
Seabra MC, Wasmeier C. Controlling the location and activation of Rab GTPases[J]. Curr Opin Cell Biol, 2004, 16(4): 451-457. DOI: 10.1016/j.ceb.2004.06.014.
|
10. |
Seabra MC, Ho YK, Anant JS. Deficient geranylgeranylation of Ram/Rab27 in choroideremia[J]. J Biol Chem, 1995, 270(41): 24420-24427. DOI: 10.1074/jbc.270.41.24420.
|
11. |
Xue K, Oldani M, Jolly JK, et al. Correlation of optical coherence tomography and autofluorescence in the outer retina and choroid of patients with choroideremia[J]. Invest Ophthalmol Vis Sci, 2016, 57(8): 3674-3684. DOI: 10.1167/iovs.15-18364.
|
12. |
Gordiyenko NV, Fariss RN, Zhi C, et al. Silencing of the CHM gene alters phagocytic and secretory pathways in the retinal pigment epithelium[J]. Invest Ophthalmol Vis Sci, 2010, 51(2): 1143-1150. DOI: 10.1167/iovs.09-4117.
|
13. |
Duong TT, Vasireddy V, Ramachandran P, et al. Use of induced pluripotent stem cell models to probe the pathogenesis of choroideremia and to develop a potential treatment[J]. Stem Cell Res, 2018, 27: 140-150. DOI: 10.1016/j.scr.2018.01.009.
|
14. |
Shen LL, Ahluwalia A, Sun M, et al. Long-term natural history of visual acuity in eyes with choroideremia: a systematic review and meta-analysis of data from 1004 individual eyes[J]. Br J Ophthalmol, 2021, 105(2): 271-278. DOI: 10.1136/bjophthalmol-2020-316028.
|
15. |
Han X, Wu S, Li H, et al. Clinical characteristics and molecular genetic analysis of a cohort of Chinese patients with choroideremia[J]. Retina, 2020, 40(11): 2240-2253. DOI: 10.1097/iae.0000000000002743.
|
16. |
Song Y, Chen C, Xie Y, et al. Clinical and genetic findings in a Chinese cohort with choroideremia[J]. Eye (Lond), 2023, 37(3): 459-466. DOI: 10.1038/s41433-022-01950-6.
|
17. |
Krill AE. Atrophic macular changes with emphasis on hereditary aspects[J]. Trans Ophthalmol Soc UK, 1972, 92: 419-447.
|
18. |
Kärnä J. Choroideremia. A clinical and genetic study of 84 Finnish patients and 126 female carriers[J]. Acta Ophthalmol Suppl, 1986, 176: 1-68.
|
19. |
Jauregui R, Park KS, Tanaka AJ, et al. Spectrum of disease severity and phenotype in choroideremia carriers[J]. Am J Ophthalmol, 2019, 207: 77-86. DOI: 10.1016/j.ajo.2019.06.002.
|
20. |
Beaufrère L, Rieu S, Hache JC, et al. Altered rep-1 expression due to substitution at position +3 of the IVS13 splice-donor site of the choroideremia (CHM) gene[J]. Curr Eye Res, 1998, 17(7): 726-729.
|
21. |
Preising MN, Wegscheider E, Friedburg C, et al. Fundus autofluorescence in carriers of choroideremia and correlation with electrophysiologic and psychophysical data[J]. Ophthalmology, 2009, 116(6): 1201-1209. DOI: 10.1016/j.ophtha.2009.01.016.
|
22. |
Mura M, Sereda C, Jablonski MM, et al. Clinical and functional findings in choroideremia due to complete deletion of the CHM gene[J]. Arch Ophthalmol, 2007, 125(8): 1107-1113. DOI: 10.1001/archopht.125.8.1107.
|
23. |
Yusuf IH, MacLaren RE. Choroideremia: toward regulatory approval of retinal gene therapy[J/OL]. Cold Spring Harb Perspect Med, 2023, 13(12): a041279[2023-06-05]. https://pubmed.ncbi.nlm.nih.gov/37277205/. DOI: 10.1101/cshperspect.a041279.
|
24. |
Hariri AH, Velaga SB, Girach A, et al. Measurement and reproducibility of preserved ellipsoid zone area and preserved retinal pigment epithelium area in eyes with choroideremia[J]. Am J Ophthalmol, 2017, 179: 110-117. DOI: 10.1016/j.ajo.2017.05.002.
|
25. |
Harvey CM, Whitmore SS, Critser DB, et al. Scleral pits represent degeneration around the posterior ciliary arteries and are signs of disease severity in choroideremia[J]. Eye (Lond), 2020, 34(4): 746-754. DOI: 10.1038/s41433-019-0599-4.
|
26. |
Cunningham CM, Critser DB, Han IC. Swept-source OCT of a scleral tunnel in choroideremia[J]. Ophthalmology, 2018, 125(6): 806. DOI: 10.1016/j.ophtha.2018.03.010.
|
27. |
Hariri AH, Ip MS, Girach A, et al. Macular spatial distribution of preserved autofluorescence in patients with choroideremia[J]. Br J Ophthalmol, 2019, 103(7): 933-937. DOI: 10.1136/bjophthalmol-2018-312620.
|
28. |
Jolly JK, Edwards TL, Moules J, et al. A qualitative and quantitative assessment of fundus autofluorescence patterns in patients with choroideremia[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4498-4503. DOI: 10.1167/iovs.15-18362.
|
29. |
Dimopoulos IS, Freund PR, Knowles JA, et al. The natural history of full-field stimulus threshold decline in choroideramia[J]. Retina, 2018, 38(9): 1731-1742. DOI: 10.1097/iae.0000000000001764.
|
30. |
Jolly JK, Groppe M, Birks J, et al. Functional defects in color vision in patients with choroideremia[J]. Am J Ophthalmol, 2015, 160(4): 822-831. DOI: 10.1016/j.ajo.2015.06.018.
|
31. |
Seitz IP, Jolly JK, Dominik Fischer M, et al. Colour discrimination ellipses in choroideremia[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(4): 665-673. DOI: 10.1007/s00417-018-3921-0.
|
32. |
Edwards TL, Groppe M, Jolly JK, et al. Correlation of retinal structure and function in choroideremia carriers[J]. Ophthalmology, 2015, 122(6): 1274-1276. DOI: 10.1016/j.ophtha.2014.12.036.
|
33. |
Syed R, Sundquist SM, Ratnam K, et al. High-resolution images of retinal structure in patients with choroideremia[J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 950-961. DOI: 10.1167/iovs.12-10707.
|
34. |
McTaggart KE, Tran M, Mah DY, et al. Mutational analysis of patients with the diagnosis of choroideremia[J]. Hum Mutat, 2002, 20(3): 189-196. DOI: 10.1002/humu.10114.
|
35. |
van den Hurk JA, van de Pol DJ, Wissinger B, et al. Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon[J]. Hum Genet, 2003, 113(3): 268-275. DOI: 10.1007/s00439-003-0970-0.
|
36. |
Chi JY, MacDonald IM, Hume S. Copy number variant analysis in CHM to detect duplications underlying choroideremia[J]. Ophthalmic Genet, 2013, 34(4): 229-233. DOI: 10.3109/13816810.2012.752016.
|
37. |
Zhou Q, Yao F, Han X, et al. Rep1 copy number variation is an important genetic cause of choroideremia in Chinese patients[J]. Exp Eye Res, 2017, 164: 64-73. DOI: 10.1016/j.exer.2017.07.016.
|
38. |
Poloschek CM, Kloeckener-Gruissem B, Hansen LL, et al. Syndromic choroideremia: sublocalization of phenotypes associated with Martin-Probst deafness mental retardation syndrome[J]. Invest Ophthalmol Vis Sci, 2008, 49(9): 4096-4104. DOI: 10.1167/iovs.08-2044.
|
39. |
Kmoch S, Majewski J, Ramamurthy V, et al. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness[J]. Nat Commun, 2015, 6: 5614. DOI: 10.1038/ncomms6614.
|
40. |
Kabunga P, Lau AK, Phan K, et al. Systematic review of cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy[J]. Int J Cardiol, 2015, 181: 303-310. DOI: 10.1016/j.ijcard.2014.12.038.
|
41. |
Richardson R, Smart M, Tracey-White D, et al. Mechanism and evidence of nonsense suppression therapy for genetic eye disorders[J]. Exp Eye Res, 2017, 155: 24-37. DOI: 10.1016/j.exer.2017.01.001.
|
42. |
Moosajee M, Tracey-White D, Smart M, et al. Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model[J]. Hum Mol Genet, 2016, 25(16): 3416-3431. DOI: 10.1093/hmg/ddw184.
|