1. |
Yu-Wai-Man P, Griffiths PG, Gorman GS, et al. Multi-system neurological disease is common in patients with OPA1 mutations[J]. Brain, 2010, 133(Pt 3): 771-786. DOI: 10.1093/brain/awq007.
|
2. |
MacVicar T, Langer T. OPA1 processing in cell death and disease-the long and short of it[J]. J Cell Sci, 2016, 129(12): 2297-2306. DOI: 10.1242/jcs.159186.
|
3. |
Li Y, Li J, Jia X, et al. Genetic and clinical analyses of DOA and LHON in 304 Chinese patients with suspected childhood-onset hereditary optic neuropathy[J/OL]. PLoS One, 2017, 12(1): e0170090[2017-01-12]. https://pubmed.ncbi.nlm.nih.gov/28081242/. DOI: 10.1371/journal.pone.0170090.
|
4. |
Caporali L, Magri S, Legati A, et al. ATPase domain AFG3L2 mutations alter OPA1 processing and cause optic neuropathy[J]. Ann Neurol, 2020, 88(1): 18-32. DOI: 10.1002/ana.25723.
|
5. |
Chen J, Xu K, Zhang X, et al. Mutation screening of mitochondrial DNA as well as OPA1 and OPA3 in a Chinese cohort with suspected hereditary optic atrophy[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6987-6995. DOI: 10.1167/iovs.14-14953.
|
6. |
Yen MY, Wang AG, Lin YC, et al. Novel mutations of the OPA1 gene in Chinese dominant optic atrophy[J]. Ophthalmology, 2010, 117(2): 392-396. DOI: 10.1016/j.ophtha.2009.07.019.
|
7. |
Lenaers G, Hamel C, Delettre C, et al. Dominant optic atrophy[J]. Orphanet J Rare Dis, 2012, 7: 46. DOI: 10.1186/1750-1172-7-46.
|
8. |
Thomas PK, Workman JM, Thage O. Behr's syndrome. A family exhibiting pseudodominant inheritance[J]. J Neurol Sci, 1984, 64(2): 137-148. DOI: 10.1016/0022-510x(84)90032-7.
|
9. |
Spiegel R, Saada A, Flannery PJ, et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation[J]. J Med Genet, 2016, 53(2): 127-131. DOI: 10.1136/jmedgenet-2015-103361.
|
10. |
Volker-Dieben HJ, Van Lith GH, Went LN, et al. A family with sex linked optic atrophy: ophthalmological and neurological aspects[J]. Doc Ophthalmol, 1974, 37(2): 307-326. DOI: 10.1007/BF00147264.
|
11. |
Went LN, De Vries-De Mol EC, Volker-Dieben HJ. A family with apparently sex-linked optic atrophy[J]. J Med Genet, 1975, 12(1): 94-98. DOI: 10.1136/jmg.12.1.94.
|
12. |
Assink JJ, Tijmes NT, ten Brink JB, et al. A gene for X-linked optic atrophy is closely linked to the Xp11.4-Xp11.2 region of the X chromosome[J]. Am J Hum Genet, 1997, 61(4): 934-939. DOI: 10.1086/514884.
|
13. |
Anikster Y, Kleta R, Shaag A, et al. Type Ⅲ 3-methylglutaconic aciduria (optic atrophy plus syndrome, or costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews[J]. Am J Hum Genet, 2001, 69(6): 1218-1224. DOI: 10.1086/324651.
|
14. |
Ryu SW, Jeong HJ, Choi M, et al. Optic atrophy 3 as a protein of the mitochondrial outer membrane induces mitochondrial fragmentation[J]. Cell Mol Life Sci, 2010, 67(16): 2839-2850. DOI: 10.1007/s00018-010-0365-z.
|
15. |
Reynier P, Amati-Bonneau P, Verny C, et al. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract[J/OL]. J Med Genet, 2004, 41(9): e110[2004-09-03]. https://pubmed.ncbi.nlm.nih.gov/15342707/. DOI: 10.1136/jmg.2003.016576.
|
16. |
Votruba M. Molecular genetic basis of primary inherited optic neuropathies[J]. Eye (Lond), 2004, 18(11): 1126-1132. DOI: 10.1038/sj.eye.6701570.
|
17. |
Sheffer RN, Zlotogora J, Elpeleg ON, et al. Behr's syndrome and 3-methylglutaconic aciduria[J]. Am J Ophthalmol, 1992, 114(4): 494-497. DOI: 10.1016/s0002-9394(14)71864-1.
|
18. |
Lerman-Sagie T. Behr syndrome[J]. Pediatr Neurol, 1995, 12(1): 90. DOI: 10.1016/0887-8994(95)95022-u.
|
19. |
Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy[J]. Nat Genet, 2000, 26(2): 207-210. DOI: 10.1038/79936.
|
20. |
Kerrison JB, Arnould VJ, Ferraz Sallum JM, et al. Genetic heterogeneity of dominant optic atrophy, Kjer type: identification of a second locus on chromosome 18q12.2-12.3[J]. Arch Ophthalmol, 1999, 117(6): 805-810. DOI: 10.1001/archopht.117.6.805.
|
21. |
Koch A, Thiemann M, Grabenbauer M, et al. Dynamin-like protein 1 is involved in peroxisomal fission[J]. J Biol Chem, 2003, 278(10): 8597-8605. DOI: 10.1074/jbc.M211761200.
|
22. |
Tilokani L, Nagashima S, Paupe V, et al. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3): 341-360. DOI: 10.1042/EBC20170104.
|
23. |
Gerber S, Charif M, Chevrollier A, et al. Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission[J]. Brain, 2017, 140(10): 2586-2596. DOI: 10.1093/brain/awx219.
|
24. |
Keller N, Paketci C, Edem P, et al. De novo DNM1L variant presenting with severe muscular atrophy, dystonia and sensory neuropathy[J/OL]. Eur J Med Genet, 2021, 64(2): 104134[2020-12-31]. https://pubmed.ncbi.nlm.nih.gov/33387674/. DOI: 10.1016j.ejmg./2020.104134.
|
25. |
Barbet F, Gerber S, Hakiki S, et al. A first locus for isolated autosomal recessive optic atrophy (ROA1) maps to chromosome 8q[J]. Eur J Hum Genet, 2003, 11(12): 966-971. DOI: 10.1038/sj.ejhg.5201070.
|
26. |
Hanein S, Perrault I, Roche O, et al. TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy[J]. Am J Hum Genet, 2009, 84(4): 493-498. DOI: 10.1016/j.ajhg.2009.03.003.
|
27. |
Meyer E, Michaelides M, Tee LJ, et al. Nonsense mutation in TMEM126A causing autosomal recessive optic atrophy and auditory neuropathy[J]. Mol Vis, 2010, 16: 650-664.
|
28. |
Carelli V, Schimpf S, Fuhrmann N, et al. A clinically complex form of dominant optic atrophy (OPA8) maps on chromosome 16[J]. Hum Mol Genet, 2011, 20(10): 1893-1905. DOI: 10.1093/hmg/ddr071.
|
29. |
Chen XJ, Wang X, Kaufman BA, et al. Aconitase couples metabolic regulation to mitochondrial DNA maintenance[J]. Science, 2005, 307(5710): 714-717. DOI: 10.1126/science.1106391.
|
30. |
Charif M, Gueguen N, Ferre M, et al. Dominant ACO2 mutations are a frequent cause of isolated optic atrophy[J/OL]. Brain Commun, 2021, 3(2): fcab063[2020-04-07]. https://pubmed./ncbi.nlm.nih.gov/34056600/. DOI: 10.1093/braincomms/fcab063.
|
31. |
Spiegel R, Pines O, Ta-Shma A, et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2[J]. Am J Hum Genet, 2012, 90(3): 518-523. DOI: 10.1016/j.ajhg.2012.01.009.
|
32. |
Srivastava S, Gubbels CS, Dies K, et al. Increased survival and partly preserved cognition in a patient with ACO2-related disease secondary to a novel variant[J]. J Child Neurol, 2017, 32(9): 840-845. DOI: 10.1177/0883073817711527.
|
33. |
Sadat R, Barca E, Masand R, et al. Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency[J]. Mol Genet Metab, 2016, 118(1): 28-34. DOI: 10.1016/j.ymgme.2016.03.004.
|
34. |
Charif M, Nasca A, Thompson K, et al. Neurologic phenotypes associated with mutations in RTN4IP1 (OPA10) in children and young adults[J]. JAMA Neurol, 2018, 75(1): 105-113. DOI: 10.1001/jamaneurol.2017.2065.
|
35. |
Angebault C, Guichet PO, Talmat-Amar Y, et al. Recessive mutations in RTN4IP1 cause isolated and syndromic optic neuropathies[J]. Am J Hum Genet, 2015, 97(5): 754-760. DOI: 10.1016/j.ajhg.2015.09.012.
|
36. |
Okamoto N, Miya F, Hatsukawa Y, et al. Siblings with optic neuropathy and RTN4IP1 mutation[J]. J Hum Genet, 2017, 62(10): 927-929. DOI: 10.1038/jhg.2017.68.
|
37. |
Hartmann B, Wai T, Hu H, et al. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation[J/OL]. Elife, 2016, 5: e16078[2016-08-06]. https://pubmed.ncbi.nlm.nih.gov/27495975/. DOI: 10.7554/eLife.16078.
|
38. |
Patron M, Sprenger HG, Langer T. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration[J]. Cell Res, 2018, 28(3): 296-306. DOI: 10.1038/cr.2018.17.
|
39. |
Baderna V, Schultz J, Kearns LS, et al. A novel AFG3L2 mutation close to AAA domain leads to aberrant OMA1 and OPA1 processing in a family with optic atrophy[J]. Acta Neuropathol Commun, 2020, 8(1): 93. DOI: 10.1186/s40478-020-00975-w.
|
40. |
Cagnoli C, Stevanin G, Brussino A, et al. Missense mutations in the AFG3L2 proteolytic domain account for approximately 1.5% of European autosomal dominant cerebellar ataxias[J]. Hum Mutat, 2010, 31(10): 1117-1124. DOI: 10.1002/humu.21342.
|
41. |
Pierson TM, Adams D, Bonn F, et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases[J/OL]. PLoS Genet, 2011, 7(10): e1002325[2011-10-25]. https://pubmed.ncbi.nlm.nih.gov/22022284/. DOI: 10.1371/journal.pgen.1002325.
|
42. |
Piro-Megy C, Sarzi E, Tarres-Sole A, et al. Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy[J]. J Clin Invest, 2020, 130(1): 143-156. DOI: 10.1172/JCI128513.
|
43. |
Jurkute N, Leu C, Pogoda HM, et al. SSBP1 mutations in dominant optic atrophy with variable retinal degeneration[J]. Ann Neurol, 2019, 86(3): 368-383. DOI: 10.1002/ana.25550.
|
44. |
Del Dotto V, Ullah F, Di Meo I, et al. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder[J]. J Clin Invest, 2020, 130(1): 108-125. DOI: 10.1172/JCI128514.
|