- 1. Guangxi University of Traditional Chinese Medicine, Graduate School, Nanning 530001, China;
- 2. The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530001, China;
Iron death is an alternative to normal cell death and is regulated by a variety of cellular metabolic pathways. Iron death has become a hot topic of research because it can cause damage to various organs and degenerative diseases in the body. Metabolism, signalling pathways, endoplasmic reticulum stress, and immune cells can all affect the occurrence of iron death, and the blood-retina destruction induced by iron death plays an important role in autoimmune uveitis. Exploring the components of the blood-retina regulatory mechanism of iron death in autoimmune uveitis can lead to the search for targeted drug targets, which can provide a new research idea for the subsequent study of the diagnosis and treatment of autoimmune uveitis.
1. | 杨明, 何笑英, 韩伟. 自身免疫性葡萄膜炎中免疫细胞的功能及变化的研究进展[J]. 细胞与分子免疫学杂志, 2023, 39(1): 81-87.Yang M, He XX, Han W. The function and changes of immune cells in autoimmune uveitis[J]. Chinese Journal of Cellular and Molecular Immunology, 2023, 39(1): 81-87. |
2. | 李江伟, 张艳雪, 彭静娴, 等. 彭清华分期辨治自身免疫性葡萄膜炎经验[J]. 中医杂志, 2023, 64(23): 2393-2396,2406. DOI: 10.13288/j.11-2166/r.2023.23.004.Li JW, Zhang YX, Peng JX, et al. Peng Qinghua's experience in the staged treatment of autoimmune uveitis[J]. Journal of Traditional Chinese Medicine, 2023, 64(23): 2393-2396,2406. DOI: 10.13288/j.11-2166/r.2023.23.004. |
3. | 陈双兰, 刘青松, 胡双元, 等. 铁死亡及其在炎症性肠病中对肠上皮细胞作用机制的研究进展[J]. 中国药理学通报, 2023, 39(12): 2210-2215. DOI: 10.12360/CPB202205107.Chen SL, Liu QS, Hu SY, et al. Research progress of ferroptosis and its mechanism of action on intestinal epithelial cells in inflammatory bowel disease[J]. Chinese Pharmacological Bulletin, 2023, 39(12): 2210-2215. DOI: 10.12360/CPB202205107. |
4. | 王晓璇, 王彦, 张铭连, 等. 铁死亡在视网膜缺血再灌注损伤中的作用及中药治疗的研究进展[J]. 中国中医眼科杂志, 2023, 33(12): 1166-1170. DOI: 10.13444/j.cnki.zgzyykzz.2023.12.015.Wang XX, Wang Y, Zhang ML, et al. The role of ferroptosis in retinal ischemia-reperfusion injury and research progress in traditional Chinese medicine treatment[J]. Chinese Journal of Chinese Ophthalmology, 2023, 33(12): 1166-1170. DOI: 10.13444/j.cnki.zgzyykzz.2023.12.015. |
5. | Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021. |
6. | 徐丽程, 田霖丽, 刘鸣. 铁死亡的代谢关联机制及其在肿瘤免疫治疗中的作用研究进展[J]. 中国肿瘤临床, 2021, 48(1): 40-44. DOI: 10.3969/j.issn.1000-8179.2021.01.967.Xu LC, Tian LL, Liu M. Progress in the study of metabolism-associated mechanism of iron death and its role in tumour immunotherapy[J]. China Cancer Clin, 2021, 48(1): 40-44. DOI: 10.3969/j.issn.1000-8179.2021.01.967. |
7. | Böhm EW, Buonfiglio F, Voigt AM, et al. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases[J/OL]. Redox Biol, 2023, 68: 102967[2023-11-18]. https://pubmed.ncbi.nlm.nih.gov/38006824/. DOI: 10.1016/j.redox.2023.102967. |
8. | Rademaker G, Boumahd Y, Peiffer R, et al. Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells[J]. Redox Biol, 2022, 53: 102324[2022-05-04]. https://pubmed.ncbi.nlm.nih.gov/35533575/. DOI: 10.1016/j.redox.2022.102324. |
9. | Huang J, Zhang J, Ma J, et al. Inhibiting ferroptosis: a novel approach for ulcerative colitis therapeutics[J/OL]. Oxid Med Cell Longev, 2022, 2022: 9678625[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/35378823/. DOI: 10.1155/2022/9678625 . |
10. | Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003. |
11. | Fan J, Jiang T, He D. Emerging insights into the role of ferroptosis in the pathogenesis of autoimmune diseases[J/OL]. Front Immunol, 2023, 14: 1120519[2023-03-30]. https://pubmed.ncbi.nlm.nih.gov/37063835/. DOI: 10.3389/fimmu.2023.1120519. |
12. | Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "Iron Maiden" cell death[J/OL]. Cells, 2020, 9(6): 1505[2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/32575749/. DOI: 10.3390/cells9061505. |
13. | 李敏, 莫诗雯, 李伊, 等. 血-视网膜屏障损伤的机制及治疗对策[J]. 国际眼科杂志, 2020, 20(11): 1902-1906. DOI: 10.3980/j.issn.1672-5123.2020.11.13.Li M, Mo SW, Li Y, et al. Mechanisms and therapeutic countermeasures of blood-retinal barrier damage[J]. Int Eye Sci, 2020, 20(11): 1902-1906. DOI: 10.3980/j.issn.1672-5123.2020.11.13. |
14. | Yemanyi F, Bora K, Blomfield AK, et al. Wnt signaling in inner blood-retinal barrier maintenance[J/OL]. Int J Mol Sci, 2021, 22(21): 11877[2021-11-02]. https://pubmed.ncbi.nlm.nih.gov/34769308/. DOI: 10.3390/ijms222111877. |
15. | Chen YH, Eskandarpour M, Zhang X, et al. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis[J]. J Neuroinflammation, 2021, 18(1): 49. DOI: 10.1186/s12974-021-02080-8. |
16. | Weigelt CM, Zippel N, Fuchs H, et al. Characterization and validation of in vitro and in vivo models to investigate TNF-α-induced inflammation in retinal diseases[J]. Transl Vis Sci Technol, 2022, 11(5): 18. DOI: 10.1167/tvst.11.5.18. |
17. | Fan W, Wang X, Zeng S, et al. Global lactylome reveals lactylation-dependent mechanisms underlying TH17 differentiation in experimental autoimmune uveitis[J/OL]. Sci Adv, 2023, 9(42): 4655[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/37851814/. DOI: 10.1126/sciadv.adh4655. |
18. | Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship[J/OL]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118535[2019-08-22]. https://pubmed.ncbi.nlm.nih.gov/31446062/. DOI: 10.1016/j.bbamcr.2019.118535. |
19. | Yang S, Lian G. ROS and diseases: role in metabolism and energy supply[J]. Mol Cell Biochem, 2020, 467(1-2): 1-12. DOI: 10.1007/s11010-019-03667-9. |
20. | Tisi A, Feligioni M, Passacantando M, et al. The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration[J]. Cells, 2021, 10(1): 64. DOI: 10.3390/cells10010064. |
21. | Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 108. DOI: 10.1038/s41392-020-00216-5. |
22. | Iyer S, Lagrew MK, et al. The vitreous ecosystem in diabetic retinopathy: insight into the patho-mechanisms of disease[J/OL]. Int J Mol Sci, 2021, 22(13): 7142[2021-07-01]. https://pubmed.ncbi.nlm.nih.gov/34281192/. DOI: 10.3390/ijms22137142. |
23. | 韩莎莎, 李跃峰, 徐新萌. 基于NF-κB信号通路探究miR-3197在糖尿病视网膜病变中的作用机制[J]. 眼科新进展, 2024, 44(3): 188-192. DOI: 10.13389/j.cnki.rao.2024.0037.Han SS, Li YF, Xu XM. Probing the mechanism of miR-3197 in diabetic retinopathy based on NF-κB signalling pathway[J]. Rec Adv Ophthalmol, 2024, 44(3): 188-192. DOI: 10.13389/j.cnki.rao.2024.0037. |
24. | Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3): 205. DOI: 10.1038/s41419-023-05716-0. |
25. | Oh BM, Lee SJ, Park GL, et al. Erastin inhibits septic shock and inflammatory gene expression via suppression of the NF-κB pathway[J/OL]. J Clin Med, 2019, 8(12): 2210[2019-11-14]. https://pubmed.ncbi.nlm.nih.gov/31847346/. DOI: 10.3390/jcm8122210. |
26. | 高明, 徐丽丽, 王利存, 等. 基于TLR4/NF-κB信号通路探讨银杏二萜内酯对糖尿病大鼠视网膜病变的影响[J]. 天津中医药, 2023, 40(5): 654-661. DOI: 10.11656/j.issn.1672-1519.2023.05.20.Gao M, Xu LL, Wang LC, et al. Effects of ginkgo diterpene lactone on retinopathy in diabetic rats based on TLR4/NF-κB signalling pathway[J]. Tianjin Traditional Chinese Medicine, 2023, 40(5): 654-661. DOI: 10.11656/j.issn.1672-1519.2023.05.20. |
27. | 梁岑怡, 滕金豪, 辛宛铃, 等. 基于MAPK信号通路的中药治疗急性胰腺炎作用机制研究进展[J]. 环球中医药, 2024, 17(8): 1655-1661. DOI: 10.3969/j.issn.1674-1749.2024.08.033.Liang CY, Teng JH, Xin WL, et al. Progress on the mechanism of action of traditional Chinese medicine based on MAPK signalling pathway in the treatment of acute pancreatitis[J]. Global Chinese Medicine, 2024, 17(8): 1655-1661. DOI: 10.3969/j.issn.1674-1749.2024.08.033. |
28. | Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(9): 1398-1409. DOI: 10.1016/j.bbagen.2019.06.010. |
29. | Zeng S, Zhang T, Chen Y, et al. Inhibiting the activation of MAPK (ERK1/2) in stressed Müller cells prevents photoreceptor degeneration[J]. Theranostics, 2022, 12(15): 6705-6722. DOI: 10.7150/thno.71038. |
30. | 叶露, 李秀芹, 王建青. 肝脏疾病中内质网应激与铁死亡的关系[J]. 临床肝胆病杂志, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.Ye L, Li XQ, Wang JQ. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. J Clin Hepatol, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036. |
31. | He S, Yaung J, Kim YH, et al. Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(5): 677-683. DOI: 10.1007/s00417-008-0770-2. |
32. | Lee YS, Lee DH, Choudry HA, et al. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis[J]. Mol Cancer Res, 2018, 16(7): 1073-1076. DOI: 10.1158/1541-7786.MCR-18-0055. |
33. | Wang N, Wei L, Liu D, et al. Identification and validation of autophagy-related genes in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 867600[2022-04-29]. https://pubmed.ncbi.nlm.nih.gov/35574010/. DOI: 10.3389/fendo.2022.867600. |
34. | Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323-335. DOI: 10.1038/nature09782. |
35. | Santeford A, Wiley LA, Park S, et al. Impaired autophagy in macrophages promotes inflammatory eye disease[J]. Autophagy, 2016, 12(10): 1876-1885. DOI: 10.1080/15548627.2016.1207857. |
36. | Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019, 10(11): 822[2019-10-28]. https://pubmed.ncbi.nlm.nih.gov/31659150/. DOI: 10.1038/s41419-019-2064-5. |
37. | Wang C, Zhou W, Su G, et al. Progranulin suppressed autoimmune uveitis and autoimmune neuroinflammation by inhibiting Th1/Th17 cells and promoting treg cells and M2 macrophages[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): e1133[2022-01-26]. https://pubmed.ncbi.nlm.nih.gov/35082168/. DOI: 10.1212/NXI.0000000000001133. |
38. | Ma J, Zhang H, Chen Y, et al. The role of macrophage iron overload and ferroptosis in atherosclerosis[J]. Biomolecules, 2022, 12(11): 1702[2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/36421722/. DOI: 10.3390/biom12111702. |
39. | Yang Y, Wang Y, Guo L, et al. Interaction between macrophages and ferroptosis[J]. Cell Death Dis, 2022, 13(4): 355. DOI: 10.1038/s41419-022-04775-z. |
40. | Yang X, Yu XW, Zhang DD, et al. Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases[J]. Chin Med J (Engl), 2020, 133(21): 2586-2594. DOI: 10.1097/CM9.0000000000001015. |
41. | Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases[J]. Theranostics, 2017, 7(6): 1543-1588. DOI: 10.7150/thno.15625. |
42. | 刘自强, 接传红, 王建伟, 等. 糖尿病视网膜病变免疫机制的研究进展[J]. 眼科新进展, 2022, 42(2): 150-154. DOI: 10.13389/j.cnki.rao.2022.0031.Liu ZQ, Jie CH, Wang JW, et al. Progress in the study of immune mechanisms in diabetic retinopathy[J]. Rec Adv Ophthalmol, 2022, 42(2): 150-154. DOI: 10.13389/j.cnki.rao.2022.0031. |
43. | Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675. DOI: 10.1038/s41418-019-0380-z. |
44. | Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J/OL]. Elife, 2014, 3: e02523[2014-05-20]. https://pubmed.ncbi.nlm.nih.gov/24844246/. DOI: 10.7554/eLife.02523. |
45. | Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J]. Cell Death Dis, 2018, 9(7): 753. DOI: 10.1038/s41419-018-0794-4. |
46. | Martis RM, Knight LJ, Donaldson PJ, et al. Identification, expression, and roles of the cystine/glutamate antiporter in ocular tissues[J/OL]. Oxid Med Cell Longev, 2020, 2020: 4594606[2020-06-18]. https://pubmed.ncbi.nlm.nih.gov/32655769/. DOI: 10.1155/2020/4594606. |
47. | Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[J]. Cell Death Differ, 2023, 30(1): 69-81. DOI: 10.1038/s41418-022-01046-4. |
48. | Wei TT, Zhang MY, Zheng XH, et al. Interferon-γ induces retinal pigment epithelial cell ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in age-related macular degeneration[J]. FEBS J, 2022, 289(7): 1968-1983. DOI: 10.1111/febs.16272. |
49. | Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9. |
- 1. 杨明, 何笑英, 韩伟. 自身免疫性葡萄膜炎中免疫细胞的功能及变化的研究进展[J]. 细胞与分子免疫学杂志, 2023, 39(1): 81-87.Yang M, He XX, Han W. The function and changes of immune cells in autoimmune uveitis[J]. Chinese Journal of Cellular and Molecular Immunology, 2023, 39(1): 81-87.
- 2. 李江伟, 张艳雪, 彭静娴, 等. 彭清华分期辨治自身免疫性葡萄膜炎经验[J]. 中医杂志, 2023, 64(23): 2393-2396,2406. DOI: 10.13288/j.11-2166/r.2023.23.004.Li JW, Zhang YX, Peng JX, et al. Peng Qinghua's experience in the staged treatment of autoimmune uveitis[J]. Journal of Traditional Chinese Medicine, 2023, 64(23): 2393-2396,2406. DOI: 10.13288/j.11-2166/r.2023.23.004.
- 3. 陈双兰, 刘青松, 胡双元, 等. 铁死亡及其在炎症性肠病中对肠上皮细胞作用机制的研究进展[J]. 中国药理学通报, 2023, 39(12): 2210-2215. DOI: 10.12360/CPB202205107.Chen SL, Liu QS, Hu SY, et al. Research progress of ferroptosis and its mechanism of action on intestinal epithelial cells in inflammatory bowel disease[J]. Chinese Pharmacological Bulletin, 2023, 39(12): 2210-2215. DOI: 10.12360/CPB202205107.
- 4. 王晓璇, 王彦, 张铭连, 等. 铁死亡在视网膜缺血再灌注损伤中的作用及中药治疗的研究进展[J]. 中国中医眼科杂志, 2023, 33(12): 1166-1170. DOI: 10.13444/j.cnki.zgzyykzz.2023.12.015.Wang XX, Wang Y, Zhang ML, et al. The role of ferroptosis in retinal ischemia-reperfusion injury and research progress in traditional Chinese medicine treatment[J]. Chinese Journal of Chinese Ophthalmology, 2023, 33(12): 1166-1170. DOI: 10.13444/j.cnki.zgzyykzz.2023.12.015.
- 5. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
- 6. 徐丽程, 田霖丽, 刘鸣. 铁死亡的代谢关联机制及其在肿瘤免疫治疗中的作用研究进展[J]. 中国肿瘤临床, 2021, 48(1): 40-44. DOI: 10.3969/j.issn.1000-8179.2021.01.967.Xu LC, Tian LL, Liu M. Progress in the study of metabolism-associated mechanism of iron death and its role in tumour immunotherapy[J]. China Cancer Clin, 2021, 48(1): 40-44. DOI: 10.3969/j.issn.1000-8179.2021.01.967.
- 7. Böhm EW, Buonfiglio F, Voigt AM, et al. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases[J/OL]. Redox Biol, 2023, 68: 102967[2023-11-18]. https://pubmed.ncbi.nlm.nih.gov/38006824/. DOI: 10.1016/j.redox.2023.102967.
- 8. Rademaker G, Boumahd Y, Peiffer R, et al. Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells[J]. Redox Biol, 2022, 53: 102324[2022-05-04]. https://pubmed.ncbi.nlm.nih.gov/35533575/. DOI: 10.1016/j.redox.2022.102324.
- 9. Huang J, Zhang J, Ma J, et al. Inhibiting ferroptosis: a novel approach for ulcerative colitis therapeutics[J/OL]. Oxid Med Cell Longev, 2022, 2022: 9678625[2022-03-26]. https://pubmed.ncbi.nlm.nih.gov/35378823/. DOI: 10.1155/2022/9678625 .
- 10. Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. DOI: 10.1016/j.cell.2022.06.003.
- 11. Fan J, Jiang T, He D. Emerging insights into the role of ferroptosis in the pathogenesis of autoimmune diseases[J/OL]. Front Immunol, 2023, 14: 1120519[2023-03-30]. https://pubmed.ncbi.nlm.nih.gov/37063835/. DOI: 10.3389/fimmu.2023.1120519.
- 12. Battaglia AM, Chirillo R, Aversa I, et al. Ferroptosis and cancer: mitochondria meet the "Iron Maiden" cell death[J/OL]. Cells, 2020, 9(6): 1505[2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/32575749/. DOI: 10.3390/cells9061505.
- 13. 李敏, 莫诗雯, 李伊, 等. 血-视网膜屏障损伤的机制及治疗对策[J]. 国际眼科杂志, 2020, 20(11): 1902-1906. DOI: 10.3980/j.issn.1672-5123.2020.11.13.Li M, Mo SW, Li Y, et al. Mechanisms and therapeutic countermeasures of blood-retinal barrier damage[J]. Int Eye Sci, 2020, 20(11): 1902-1906. DOI: 10.3980/j.issn.1672-5123.2020.11.13.
- 14. Yemanyi F, Bora K, Blomfield AK, et al. Wnt signaling in inner blood-retinal barrier maintenance[J/OL]. Int J Mol Sci, 2021, 22(21): 11877[2021-11-02]. https://pubmed.ncbi.nlm.nih.gov/34769308/. DOI: 10.3390/ijms222111877.
- 15. Chen YH, Eskandarpour M, Zhang X, et al. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis[J]. J Neuroinflammation, 2021, 18(1): 49. DOI: 10.1186/s12974-021-02080-8.
- 16. Weigelt CM, Zippel N, Fuchs H, et al. Characterization and validation of in vitro and in vivo models to investigate TNF-α-induced inflammation in retinal diseases[J]. Transl Vis Sci Technol, 2022, 11(5): 18. DOI: 10.1167/tvst.11.5.18.
- 17. Fan W, Wang X, Zeng S, et al. Global lactylome reveals lactylation-dependent mechanisms underlying TH17 differentiation in experimental autoimmune uveitis[J/OL]. Sci Adv, 2023, 9(42): 4655[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/37851814/. DOI: 10.1126/sciadv.adh4655.
- 18. Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship[J/OL]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118535[2019-08-22]. https://pubmed.ncbi.nlm.nih.gov/31446062/. DOI: 10.1016/j.bbamcr.2019.118535.
- 19. Yang S, Lian G. ROS and diseases: role in metabolism and energy supply[J]. Mol Cell Biochem, 2020, 467(1-2): 1-12. DOI: 10.1007/s11010-019-03667-9.
- 20. Tisi A, Feligioni M, Passacantando M, et al. The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration[J]. Cells, 2021, 10(1): 64. DOI: 10.3390/cells10010064.
- 21. Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 108. DOI: 10.1038/s41392-020-00216-5.
- 22. Iyer S, Lagrew MK, et al. The vitreous ecosystem in diabetic retinopathy: insight into the patho-mechanisms of disease[J/OL]. Int J Mol Sci, 2021, 22(13): 7142[2021-07-01]. https://pubmed.ncbi.nlm.nih.gov/34281192/. DOI: 10.3390/ijms22137142.
- 23. 韩莎莎, 李跃峰, 徐新萌. 基于NF-κB信号通路探究miR-3197在糖尿病视网膜病变中的作用机制[J]. 眼科新进展, 2024, 44(3): 188-192. DOI: 10.13389/j.cnki.rao.2024.0037.Han SS, Li YF, Xu XM. Probing the mechanism of miR-3197 in diabetic retinopathy based on NF-κB signalling pathway[J]. Rec Adv Ophthalmol, 2024, 44(3): 188-192. DOI: 10.13389/j.cnki.rao.2024.0037.
- 24. Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3): 205. DOI: 10.1038/s41419-023-05716-0.
- 25. Oh BM, Lee SJ, Park GL, et al. Erastin inhibits septic shock and inflammatory gene expression via suppression of the NF-κB pathway[J/OL]. J Clin Med, 2019, 8(12): 2210[2019-11-14]. https://pubmed.ncbi.nlm.nih.gov/31847346/. DOI: 10.3390/jcm8122210.
- 26. 高明, 徐丽丽, 王利存, 等. 基于TLR4/NF-κB信号通路探讨银杏二萜内酯对糖尿病大鼠视网膜病变的影响[J]. 天津中医药, 2023, 40(5): 654-661. DOI: 10.11656/j.issn.1672-1519.2023.05.20.Gao M, Xu LL, Wang LC, et al. Effects of ginkgo diterpene lactone on retinopathy in diabetic rats based on TLR4/NF-κB signalling pathway[J]. Tianjin Traditional Chinese Medicine, 2023, 40(5): 654-661. DOI: 10.11656/j.issn.1672-1519.2023.05.20.
- 27. 梁岑怡, 滕金豪, 辛宛铃, 等. 基于MAPK信号通路的中药治疗急性胰腺炎作用机制研究进展[J]. 环球中医药, 2024, 17(8): 1655-1661. DOI: 10.3969/j.issn.1674-1749.2024.08.033.Liang CY, Teng JH, Xin WL, et al. Progress on the mechanism of action of traditional Chinese medicine based on MAPK signalling pathway in the treatment of acute pancreatitis[J]. Global Chinese Medicine, 2024, 17(8): 1655-1661. DOI: 10.3969/j.issn.1674-1749.2024.08.033.
- 28. Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(9): 1398-1409. DOI: 10.1016/j.bbagen.2019.06.010.
- 29. Zeng S, Zhang T, Chen Y, et al. Inhibiting the activation of MAPK (ERK1/2) in stressed Müller cells prevents photoreceptor degeneration[J]. Theranostics, 2022, 12(15): 6705-6722. DOI: 10.7150/thno.71038.
- 30. 叶露, 李秀芹, 王建青. 肝脏疾病中内质网应激与铁死亡的关系[J]. 临床肝胆病杂志, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.Ye L, Li XQ, Wang JQ. Association between endoplasmic reticulum stress and ferroptosis in liver diseases[J]. J Clin Hepatol, 2023, 39(4): 980-985. DOI: 10.3969/j.issn.1001-5256.2023.04.036.
- 31. He S, Yaung J, Kim YH, et al. Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(5): 677-683. DOI: 10.1007/s00417-008-0770-2.
- 32. Lee YS, Lee DH, Choudry HA, et al. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis[J]. Mol Cancer Res, 2018, 16(7): 1073-1076. DOI: 10.1158/1541-7786.MCR-18-0055.
- 33. Wang N, Wei L, Liu D, et al. Identification and validation of autophagy-related genes in diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 867600[2022-04-29]. https://pubmed.ncbi.nlm.nih.gov/35574010/. DOI: 10.3389/fendo.2022.867600.
- 34. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323-335. DOI: 10.1038/nature09782.
- 35. Santeford A, Wiley LA, Park S, et al. Impaired autophagy in macrophages promotes inflammatory eye disease[J]. Autophagy, 2016, 12(10): 1876-1885. DOI: 10.1080/15548627.2016.1207857.
- 36. Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019, 10(11): 822[2019-10-28]. https://pubmed.ncbi.nlm.nih.gov/31659150/. DOI: 10.1038/s41419-019-2064-5.
- 37. Wang C, Zhou W, Su G, et al. Progranulin suppressed autoimmune uveitis and autoimmune neuroinflammation by inhibiting Th1/Th17 cells and promoting treg cells and M2 macrophages[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): e1133[2022-01-26]. https://pubmed.ncbi.nlm.nih.gov/35082168/. DOI: 10.1212/NXI.0000000000001133.
- 38. Ma J, Zhang H, Chen Y, et al. The role of macrophage iron overload and ferroptosis in atherosclerosis[J]. Biomolecules, 2022, 12(11): 1702[2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/36421722/. DOI: 10.3390/biom12111702.
- 39. Yang Y, Wang Y, Guo L, et al. Interaction between macrophages and ferroptosis[J]. Cell Death Dis, 2022, 13(4): 355. DOI: 10.1038/s41419-022-04775-z.
- 40. Yang X, Yu XW, Zhang DD, et al. Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases[J]. Chin Med J (Engl), 2020, 133(21): 2586-2594. DOI: 10.1097/CM9.0000000000001015.
- 41. Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases[J]. Theranostics, 2017, 7(6): 1543-1588. DOI: 10.7150/thno.15625.
- 42. 刘自强, 接传红, 王建伟, 等. 糖尿病视网膜病变免疫机制的研究进展[J]. 眼科新进展, 2022, 42(2): 150-154. DOI: 10.13389/j.cnki.rao.2022.0031.Liu ZQ, Jie CH, Wang JW, et al. Progress in the study of immune mechanisms in diabetic retinopathy[J]. Rec Adv Ophthalmol, 2022, 42(2): 150-154. DOI: 10.13389/j.cnki.rao.2022.0031.
- 43. Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675. DOI: 10.1038/s41418-019-0380-z.
- 44. Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J/OL]. Elife, 2014, 3: e02523[2014-05-20]. https://pubmed.ncbi.nlm.nih.gov/24844246/. DOI: 10.7554/eLife.02523.
- 45. Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J]. Cell Death Dis, 2018, 9(7): 753. DOI: 10.1038/s41419-018-0794-4.
- 46. Martis RM, Knight LJ, Donaldson PJ, et al. Identification, expression, and roles of the cystine/glutamate antiporter in ocular tissues[J/OL]. Oxid Med Cell Longev, 2020, 2020: 4594606[2020-06-18]. https://pubmed.ncbi.nlm.nih.gov/32655769/. DOI: 10.1155/2020/4594606.
- 47. Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[J]. Cell Death Differ, 2023, 30(1): 69-81. DOI: 10.1038/s41418-022-01046-4.
- 48. Wei TT, Zhang MY, Zheng XH, et al. Interferon-γ induces retinal pigment epithelial cell ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in age-related macular degeneration[J]. FEBS J, 2022, 289(7): 1968-1983. DOI: 10.1111/febs.16272.
- 49. Li Y, Wen Y, Liu X, et al. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury[J]. J Neuroinflammation, 2022, 19(1): 261. DOI: 10.1186/s12974-022-02621-9.