1. |
|
2. |
|
3. |
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2023.110945.
|
4. |
|
5. |
|
6. |
Geng M, Liu W, Li J, et al. LncRNA as a regulator in the development of diabetic complications[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1324393[2024-02-08]. https://pubmed.ncbi.nlm.nih.gov/38390204/. DOI: 10.3389/fendo.2024.1324393.
|
7. |
|
8. |
|
9. |
Su Y, Wu H, Pavlosky A, et al. Regulatory non-coding RNA: new instruments in the orchestration of cell death[J/OL]. Cell Death Dis, 2016, 7(8): e2333[2016-08-11]. https://pubmed.ncbi.nlm.nih.gov/27512954/. DOI: 10.1038/cddis.2016.210.
|
10. |
|
11. |
Biswas S, Thomas AA, Chen S, et al. MALAT1: An epigenetic regulator of Inflammation in diabetic retinopathy[J/OL]. Sci Rep, 2018, 8(1): 6526[2018-04-25]. https://pubmed.ncbi.nlm.nih.gov/29695738/. DOI: 10.1038/s41598-018-24907-w.
|
12. |
Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus[J/OL]. Cell Death Dis, 2014, 5(10): e1506[2014-10-30]. https://pubmed.ncbi.nlm.nih.gov/25356875/. DOI: 10.1038/cddis.2014.466.
|
13. |
|
14. |
|
15. |
Haydinger CD, Oliver GF, Ashander LM, et al. Oxidative stress and its regulation in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2023, 12(8): 1649[2023-08-21]. https://pubmed.ncbi.nlm.nih.gov/37627644/. DOI: 10.3390/antiox12081649.
|
16. |
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J/OL]. Redox Biol, 2020, 37: 101799[2020-11-13]. https://pubmed.ncbi.nlm.nih.gov/33248932/. DOI: 10.1016/j.redox.2020.101799.
|
17. |
Tian Y, Cheng W, Wang H, et al. Ascorbic acid protects retinal pigment epithelial cells from high glucose by inhibiting the NF-κB signal pathway through MALAT1/IGF2BP3 axis[J/OL]. Diabet Med, 2023, 40(5): e15050[2023-01-20]. https://pubmed.ncbi.nlm.nih.gov/36661363/. DOI: 10.1111/dme.15050.
|
18. |
|
19. |
Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells[J/OL]. Biomed Pharmacother, 2020, 124: 109699[2020-01-25]. https://pubmed.ncbi.nlm.nih.gov/31986419/. DOI: 10.1016/j.biopha.2019.109699.
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
Chen Z, Yang J, Gao Y, et al. LncRNA MALAT1 aggravates the retinal angiogenesis via miR-320a/HIF-1α axis in diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 218: 108984[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35202706/. DOI: 10.1016/j.exer.2022.108984.
|
26. |
|
27. |
Tan A, Li T, Ruan L, et al. Knockdown of malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis[J/OL]. Exp Eye Res, 2021, 207: 1085859[2021-04-20]. https://pubmed.ncbi.nlm.nih.gov/33887222/. DOI: 10.1016/j.exer.2021.108585.
|
28. |
|
29. |
Liu P, Jia SB, Shi JM, et al. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis[J/OL]. Biosci Rep, 2019, 39(5): BSR20181469[2019-05-15]. https://pubmed.ncbi.nlm.nih.gov/30988072/. DOI: 10.1042/BSR20181469.
|
30. |
|
31. |
|
32. |
|
33. |
|
34. |
Zhou LJ, Yang DW, Ou LN, et al. Circulating expression level of lncRNA Malat1 in diabetic kidney disease patients and its clinical significance[J/OL]. J Diabetes Res, 2020, 2020: 4729019[2020-08-01]. https://pubmed.ncbi.nlm.nih.gov/32832561/. DOI: 10.1155/2020/4729019.
|
35. |
Su X, Huang H, Lai J, et al. Long noncoding RNAs as potential diagnostic biomarkers for diabetes mellitus and complications: a systematic review and meta-analysis[J/OL]. J Diabetes, 2023, 16(2): e13510[2023-12-23]. https://pubmed.ncbi.nlm.nih.gov/38140829/. DOI: 10.1111/1753-0407.13510.
|
36. |
|
37. |
|
38. |
Biswas S, Coyle A, Chen S, et al. Expressions of serum incRNAs in diabetic retinopathy-a potential diagnostic tool[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 851967[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35464068/. DOI: 10.3389/fendo.2022.851967.
|
39. |
|
40. |
|
41. |
Di S, An X, Pang B, et al. Yiqi Tongluo Fang could preventive and delayed development and formation of diabetic retinopathy through antioxidant and anti-inflammatory effects[J/OL]. Biomed Pharmacother, 2022, 148: 112254[2022-02-17]. https://pubmed.ncbi.nlm.nih.gov/35183405/. DOI: 10.1016/j.biopha.2021.112254.
|
42. |
|
43. |
Davodabadi F, Farasati Far B, Sargazi S, et al. Nanomaterials-based targeting of long non-coding RNAs in cancer: a cutting-edge review of current trends[J/OL]. ChemMedChem, 2024, 19(8): e202300528[2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/38267373/. DOI: 10.1002/cmdc.202300528.
|
44. |
Shyu KG, Wang BW, Fang WJ, et al. Exosomal MALAT1 derived from high glucose-treated macrophages up-regulates resistin expression via miR-150-5p downregulation[J/OL]. Int J Mol Sci, 2022, 23(3): 1095[2022-01-20]. https://pubmed.ncbi.nlm.nih.gov/35163020/. DOI: 10.3390/ijms23031095.
|
45. |
|
46. |
|