- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
Diabetic retinopathy (DR), a neurovascular complication of diabetes, presents a multifaceted pathogenesis that encompasses numerous biological processes and molecular mechanisms. Endoplasmic reticulum stress (ERS) plays a critical role in the maintenance of cellular homeostasis, and diabetic neuro-microangiopathy is driven by high glucose, which activated ERS through the promotion of protein misfolding, oxidative stress, and disturbances in calcium homeostasis. ERS activates the unfolded protein response, thereby influencing the onset and progression of DR through modulating mitochondria-associated endoplasmic reticulum membranes, autophagy, apoptosis, microvascular function, oxidative stress, and inflammation pathways. Currently, the principal interventions against ERS comprise the modulation of the ERS signalling axis and its interactions with associated pathological processes such as autophagy, oxidative stress, and inflammation, through pharmacological and molecular mechanisms. These interventions are directly or indirectly shown to inhibit persistent ERS and are demonstrated to ameliorate DR. With the in-depth study of ERS and the research and development of various drugs for ERS, it is expected to bring novel insights and strategies for DR management in the future.
1. | Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027. |
2. | Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China[J/OL]. Nat Commun, 2023, 14(1): 4296[2023-07-18]. https://pubmed.ncbi.nlm.nih.gov/37463878/. DOI: 10.1038/s41467-023-39864-w. |
3. | Zhang SX, Wang JJ, Starr CR, et al. The endoplasmic reticulum: homeostasis and crosstalk in retinal health and disease[J/OL]. Prog Retin Eye Res, 2024, 98: 101231[2023-12-12]. https://pubmed.ncbi.nlm.nih.gov/38092262/. DOI: 10.1016/j.preteyeres.2023.101231. |
4. | Chen X, Shi C, He M, et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 352. DOI: 10.1038/s41392-023-01570-w. |
5. | Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov, 2022, 21(2): 115-140. DOI: 10.1038/s41573-021-00320-3. |
6. | Ming SL, Zhang S, Wang Q, et al. Inhibition of USP14 influences alphaherpesvirus proliferation by degrading viral VP16 protein via ER stress-triggered selective autophagy[J]. Autophagy, 2022, 18(8): 1801-1821. DOI: 10.1080/15548627.2021.2002101. |
7. | Ghosh R, Wang L, Wang ES, et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress[J]. Cell, 2014, 158(3): 534-548. DOI: 10.1016/j.cell.2014.07.002. |
8. | Yang S, Jiang H, Bian W, et al. Bip-Yorkie interaction determines oncogenic and tumor-suppressive roles of Ire1/Xbp1s activation[J/OL]. Proc Natl Acad Sci USA, 2022, 119(42): e2202133119 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/36215479/. DOI: 10.1073/pnas.2202133119. |
9. | Bahamondes Lorca VA, Bastidas Mayorga BD, Tong L, et al. UVB-induced eIF2α phosphorylation in keratinocytes depends on decreased ATF4, GADD34 and CREP expression levels[J/OL]. Life Sci, 2021, 286: 120044[2021-10-09]. https://pubmed.ncbi.nlm.nih.gov/34637792/. DOI: 10.1016/j.lfs.2021.120044. |
10. | Ren JL, Chen Y, Zhang LS, et al. Intermedin1-53 attenuates atherosclerotic plaque vulnerability by inhibiting CHOP-mediated apoptosis and inflammasome in macrophages[J]. Cell Death Dis, 2021, 12(5): 436. DOI: 10.1038/s41419-021-03712-w. |
11. | Hayakawa-Ogura M, Tana, Nakagawa T, et al. GADD34 suppresses eIF2α phosphorylation and improves cognitive function in Alzheimer's disease-model mice[J]. Biochem Biophys Res Commun, 2023, 654: 112-119. DOI: 10.1016/j.bbrc.2023.02.077. |
12. | Chiang WC, Chan P, Wissinger B, et al. Achromatopsia mutations target sequential steps of ATF6 activation[J]. Proc Natl Acad Sci USA, 2017, 114(2): 400-405. DOI: 10.1073/pnas.1606387114. |
13. | Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001, 107(7): 881-891. DOI: 10.1016/s0092-8674(01)00611-0. |
14. | Marhfour I, Lopez XM, Lefkaditis D, et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes[J]. Diabetologia, 2012, 55(9): 2417-2420. DOI: 10.1007/s00125-012-2604-3. |
15. | Victor P, Umapathy D, George L, et al. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy[J]. Cell Stress Chaperones, 2021, 26(2): 311-321. DOI: 10.1007/s12192-020-01176-z. |
16. | Nourbakhsh M, Sharifi R, Heydari N, et al. Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress[J]. J Endocrinol Invest, 2022, 45(3): 649-655. DOI: 10.1007/s40618-021-01683-5. |
17. | Hassani SS, Karamali N, Rajabinejad M, et al. Dysregulation of long noncoding RNA NEAT1/miR-199a-5/BiP axis in patients with diabetic neuropathy[J]. Lab Med, 2023, 54(2): 160-165. DOI: 10.1093/labmed/lmac082. |
18. | Bretón-Romero R, Weisbrod RM, Feng B, et al. Liraglutide treatment reduces endothelial endoplasmic reticulum stress and insulin resistance in patients with diabetes mellitus[J/OL]. J Am Heart Assoc, 2018, 7(18): e009379[2018-09-18]. https://pubmed.ncbi.nlm.nih.gov/30371206/. DOI: 10.1161/jaha.118.009379. |
19. | Prasad MK, Victor PS, Ganesh GV, et al. Sodium-glucose cotransporter-2 inhibitor suppresses endoplasmic reticulum stress and oxidative stress in diabetic nephropathy through Nrf2 signaling: a clinical and experimental study[J/OL]. J Clin Pharmacol, 2024, 2024: E1(2024-06-04)[2024-07-23]. https://pubmed.ncbi.nlm.nih.gov/38831713/. DOI: 10.1002/jcph.2465. [published online ahead of print]. |
20. | Vikraman PP, Amin K, Mohandas S, et al. Dysregulation of miR-146a is associated with exacerbated inflammation, oxidative and endoplasmic reticulum stress in the progression of diabetic foot ulcer[J]. Wound Repair Regen, 2024, 32(4): 464-474. DOI: 10.1111/wrr.13186. |
21. | Ravi R, Nagarajan H, Muralikumar S, et al. Unveiling the therapeutic potential of a mutated paraoxonase 2 in diabetic retinopathy: defying glycation, mitigating oxidative stress, ER stress and inflammation[J/OL]. Int J Biol Macromol, 2024, 258(Pt 1): 128899[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38141706/. DOI: 10.1016/j.ijbiomac.2023.128899. |
22. | Li B, Wang HS, Li GG, et al. The role of endoplasmic reticulum stress in the early stage of diabetic retinopathy[J]. Acta Diabetol, 2011, 48(2): 103-111. DOI: 10.1007/s00592-009-0170-z. |
23. | Shruthi K, Reddy SS, Reddy GB. Ubiquitin-proteasome system and ER stress in the retina of diabetic rats[J]. Arch Biochem Biophys, 2017, 627: 10-20. DOI: 10.1016/j.abb.2017.06.006. |
24. | Luo J, Zhao L, Chen AY, et al. TCF7L2 variation and proliferative diabetic retinopathy[J]. Diabetes, 2013, 62(7): 2613-2617. DOI: 10.2337/db12-1093. |
25. | Mazzoli V, Zhong LH, Dang VT, et al. Characterization of retinal microvascular complications and the effects of endoplasmic reticulum stress in mouse models of diabetic atherosclerosis[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 49. DOI: 10.1167/iovs.61.10.49. |
26. | Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J/OL]. Antioxidants(Basel), 2020, 9(12): 1244[2020-12-08]. https://pubmed.ncbi.nlm.nih.gov/33302369/. DOI: 10.3390/antiox9121244. |
27. | Li Y, Li HY, Shao J, et al. GRP75 modulates endoplasmic reticulum-mitochondria coupling and accelerates Ca2+-dependent endothelial cell apoptosis in diabetic retinopathy[J/OL]. Biomolecules, 2022, 12(12): 1778[2022-11-29]. https://pubmed.ncbi.nlm.nih.gov/36551205/. DOI: 10.3390/biom12121778. |
28. | Zhang Z, Qian Q, Li M, et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB[J]. Autophagy, 2021, 17(8): 1841-1855. DOI: 10.1080/15548627.2020.1788889. |
29. | Fu D, Yu JY, Yang S, et al. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy[J]. Diabetologia, 2016, 59(10): 2251-2261. DOI: 10.1007/s00125-016-4058-5. |
30. | 庄家圆, 罗向霞, 郑菀睿, 等. 自噬对糖尿病视网膜病变的神经血管单元组成细胞双向作用的研究进展[J]. 中华眼底病杂志, 2024, 40(2): 159-164. DOI: 10.3760/cma.j.cn511434-20230512-00213.Zhuang JY, Luo XX, Zheng WR, et al. Research progress on the bidirectional effect of autophagy on retinal neurovascular unit cells in diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2024, 40(2): 159-164. DOI: 10.3760/cma.j.cn511434-20230512-00213. |
31. | Abdel-Ghaffar A, Elhossary GG, Mahmoud AM, et al. Effects of 4-phenylbutyric acid on the development of diabetic retinopathy in diabetic rats: regulation of endoplasmic reticulum stress-oxidative activation[J]. Arch Physiol Biochem, 2023, 129(4): 964-974. DOI: 10.1080/13813455.2021.1888302. |
32. | 贾璐瑶, 董志军, 张铁民. 内质网应激与糖尿病视网膜病变[J]. 中国实用眼科杂志, 2015, 33(5): 449-452. DOI: 10.3760/cma.j.issn.1006-4443.2015.05.001.Jia LY, Dong ZJ, Zhang TM. Endoplasmic reticulum stress and diabetic retinopathy[J]. Chin J Pract Ophthalmo, 2015, 33(5): 449-452. DOI: 10.3760/cma.j.issn.1006-4443.2015.05.001. |
33. | Miyata Y, Matsumoto K, Kusano S, et al. Regulation of endothelium-reticulum-stress-mediated apoptotic cell death by a polymethoxylated flavone, nobiletin, through the inhibition of nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase in retinal müller cells[J]. Cells, 2021, 10(3): 669. DOI: 10.3390/cells10030669. |
34. | Jiang L, Wang C, Shen X. LncRNA GAS5 suppresses ER stressinduced apoptosis and inflammation by regulating SERCA2b in HG-treated retinal epithelial cell[J]. Mol Med Rep, 2020, 22(2): 1072-1080. DOI: 10.3892/mmr.2020.11163. |
35. | Zou W, Zou C, Zhao M, et al. ASK1 induces retinal microvascular endothelial cell apoptosis through ER stress-associated pathway[J]. Int J Clin Exp Pathol, 2019, 12(4): 1324-1332. |
36. | Yu X, Teng Q, Bao K, et al. Thioredoxin 1 overexpression attenuated diabetes-induced endoplasmic reticulum stress in Müller cells via apoptosis signal-regulating kinase 1[J]. J Cell Biochem, 2023, 124(3): 421-433. DOI: 10.1002/jcb.30378. |
37. | Peng QH, Tong P, Gu LM, et al. Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells[J/OL]. Biosci Rep, 2020, 40(1): BSR20192121[2020-01-31]. https://pubmed.ncbi.nlm.nih.gov/31894851/. DOI: 10.1042/bsr20192121. |
38. | Oubaha M, Miloudi K, Dejda A, et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy[J/OL]. Sci Transl Med, 2016, 8(362): 362ra144[2016-10-26]. https://pubmed.ncbi.nlm.nih.gov/27797960/. DOI: 10.1126/scitranslmed.aaf9440. |
39. | Elmasry K, Ibrahim AS, Saleh H, et al. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy[J]. Diabetologia, 2018, 61(5): 1220-1232. DOI: 10.1007/s00125-018-4560-z. |
40. | Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice[J/OL]. J Diabetes Res, 2017, 2017: 1763292 [2017-01-03]. https://pubmed.ncbi.nlm.nih.gov/28127564/. DOI: 10.1155/2017/1763292. |
41. | Wen S, Hu M, Chen C, et al. Neuritin alleviates diabetic retinopathy by regulating endoplasmic reticulum stress in rats[J/OL]. Comb Chem High Throughput Screen, 2024, 2024: E1(2024-01-03)[2021-07-23], https://pubmed.ncbi.nlm.nih.gov/38173210/. DOI: 10.2174/0113862073275316231123060640. [published online ahead of print]. |
42. | Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H2O2 and CoCl2 induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells[J/OL]. Int J Biol Macromol, 2023, 240: 124378[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37030468/. DOI: 10.1016/j.ijbiomac.2023.124378. |
43. | Sánchez-Chávez G, Hernández-Ramírez E, Osorio-Paz I, et al. Potential role of endoplasmic reticulum stress in pathogenesis of diabetic retinopathy[J]. Neurochem Res, 2016, 41(5): 1098-1106. DOI: 10.1007/s11064-015-1798-4. |
44. | 高玮, 李春霞. 糖尿病视网膜病变"代谢记忆"与氧化应激的相关性研究现状[J]. 中华眼底病杂志, 2017, 33(3): 327-330. DOI: 10.3760/cma.j.issn.1005-1015.2017.03.030.Gao W, Li CX. Relationship between diabetic retinopathy "metabolic memory" and oxidative stress[J]. Chin J Ocul Fundus Dis, 2017, 33(3): 327-330. DOI: 10.3760/cma.j.issn.1005-1015.2017.03.030. |
45. | Kang MK, Lee EJ, Kim YH, et al. Chrysin ameliorates malfunction of retinoid visual cycle through blocking activation of AGE-RAGE-ER stress in glucose-stimulated retinal pigment epithelial cells and diabetic eyes[J/OL]. Nutrients, 2018, 10(8): 1046[2018-08-08]. https://pubmed.ncbi.nlm.nih.gov/30096827/. DOI: 10.3390/nu10081046. |
46. | Rani EA, Janani R, Chonche MJ, et al. Lactucaxanthin regulates the cascade of retinal oxidative stress, endoplasmic reticulum stress and inflammatory signaling in diabetic rats[J]. Ocul Immunol Inflamm, 2023, 31(2): 320-328. DOI: 10.1080/09273948.2022.2027464. |
47. | Wang C, Wang K, Li P. Blueberry anthocyanins extract attenuated diabetic retinopathy by inhibiting endoplasmic reticulum stress via the miR-182/OGG1 axis[J]. J Pharmacol Sci, 2022, 150(1): 31-40. DOI: 10.1016/j.jphs.2022.06.004. |
48. | Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells[J/OL]. Biomed Pharmacother, 2020, 124: 109699[2020-01-25]. https://pubmed.ncbi.nlm.nih.gov/31986419/. DOI: 10.1016/j.biopha.2019.109699. |
49. | Yang J, Chen C, McLaughlin T, et al. Loss of X-box binding protein 1 in müller cells augments retinal inflammation in a mouse model of diabetes[J]. Diabetologia, 2019, 62(3): 531-543. DOI: 10.1007/s00125-018-4776-y. |
50. | Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells[J/OL]. J Inflamm(Lond), 2015, 12: 31[2015-04-17]. https://pubmed.ncbi.nlm.nih.gov/25914608/. DOI: 10.1186/s12950-015-0076-1. |
51. | Trotta MC, Maisto R, Guida F, et al. The activation of retinal HCA2 receptors by systemic beta-hydroxybutyrate inhibits diabetic retinal damage through reduction of endoplasmic reticulum stress and the NLRP3 inflammasome[J/OL]. PLoS One, 2019, 14(1): e0211005[2019-01-18]. https://pubmed.ncbi.nlm.nih.gov/30657794/. DOI: 10.1371/journal.pone.0211005. |
52. | Lenin R, Nagy PG, Alli S, et al. Critical role of endoplasmic reticulum stress in chronic endothelial activation-induced visual deficits in TIE-2-tumor necrosis factor mice[J]. J Cell Biochem, 2018, 119(10): 8460-8471. DOI: 10.1002/jcb.27072. |
53. | 姜逸, 胡娜, 袁琳, 等. 糖尿病视网膜病变过程中神经节细胞内质网应激的研究进展[J]. 上海预防医学, 2020, 32(10): 867-871. DOI: 10.19428/j.cnki.sjpm.2020.19682.Jiang Y, Hu N, Yuan L, et al. Advances in research of endoplasmic reticulum stress of ganglion cells in diabetic retinopathy[J]. Shanghai Journal of Preventive Medicine, 2020, 32(10): 867-871. DOI: 10.19428/j.cnki.sjpm.2020.19682. |
54. | Liu J, Wei L, Wang Z, et al. Protective effect of Liraglutide on diabetic retinal neurodegeneration via inhibiting oxidative stress and endoplasmic reticulum stress[J/OL]. Neurochem Int, 2020, 133: 104624[2019-11-30]. https://pubmed.ncbi.nlm.nih.gov/31794832/. DOI: 10.1016/j.neuint.2019.104624. |
55. | McLaughlin T, Wang G, Medina A, et al. Essential role of XBP1 in maintaining photoreceptor synaptic integrity in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2023, 64(14): 40. DOI: 10.1167/iovs.64.14.40. |
56. | Lenin R, Nagy PG, Jha KA, et al. GRP78 translocation to the cell surface and O-GlcNAcylation of VE-Cadherin contribute to ER stress-mediated endothelial permeability[J/OL]. Sci Rep, 2019, 9(1): 10783[2019-07-25]. https://pubmed.ncbi.nlm.nih.gov/31346222/. DOI: 10.1038/s41598-019-47246-w. |
57. | 雷雨, 郑宏华, 陈小红, 等. 胰高血糖素样肽-1治疗早期糖尿病视网膜病变的临床研究[J]. 眼科新进展, 2018, 38(7): 656-659. DOI: 10.13389/j.cnki.rao.2018.0154.Lei Y, Zheng HH, Chen XH, et al. Glucagon-like peptide-1 (GLP-1) analogues for the treatment of early diabetic retinopathy[J]. Rec Adv Ophthalmol, 2018, 38(7): 656-659. DOI: 10.13389/j.cnki.rao.2018.0154. |
58. | Li R, Yao G, Zhou L, et al. The ghrelin-GHSR-1a pathway inhibits high glucose-induced retinal angiogenesis in vitro by alleviating endoplasmic reticulum stress[J/OL]. Eye Vis (Lond), 2022, 9(1): 20[2022-07-07]. https://pubmed.ncbi.nlm.nih.gov/35668539/. DOI: 10.1186/s40662-022-00291-5. |
59. | 马仙康, 杨丽霞, 崔阳阳, 等. 中医药调控内质网应激防治糖尿病视网膜病变研究进展[J]. 中国中医药图书情报杂志, 2024, 48(1): 261-264. DOI: 10.3969/j.issn.2095-5707.202211050.Ma XK, Yang LX, Cui YY, et al. Research progress in the prevention and treatment of diabetic retinopathy by regulating endoplasmic reticulum stress with TCM[J]. Chinese Journal of Library and Information Science for Traditional Chinese Medicine, 2024, 48(1): 261-264. DOI: 10.3969/j.issn.2095-5707.202211050. |
60. | Wu K, Zhou K, Zhao M, et al. TCF7L2 promotes ER stress signaling in diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 221: 109142 [2022-06-10]. https://pubmed.ncbi.nlm.nih.gov/35691375/. DOI: 10.1016/j.exer.2022.109142. |
61. | Yang H, Liu R, Cui Z, et al. Functional characterization of 58-kilodalton inhibitor of protein kinase in protecting against diabetic retinopathy via the endoplasmic reticulum stress pathway[J]. Mol Vis, 2011, 17: 78-84. |
62. | Wen Z, He X, Wang J, et al. Hyperlipidemia induces proinflammatory responses by activating STING pathway through IRE1α-XBP1 in retinal endothelial cells[J/OL]. J Nutr Biochem, 2023, 112: 109213[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/36370931/. DOI: 10.1016/j.jnutbio.2022.109213. |
63. | Yoo YM, Joo SS. Melatonin can modulate neurodegenerative diseases by regulating endoplasmic reticulum stress[J/OL]. Int J Mol Sci, 2023, 24(3): 2381[2023-01-25]. https://pubmed.ncbi.nlm.nih.gov/36768703/. DOI: 10.3390/ijms24032381. |
64. | Reda S, Elsammak GA, Elsayed TG, et al. A comparative study between the possible protective role of melatonin versus its combination with adipose derived-mesenchymal stem cells on experimentally induced diabetic retinopathy in adult male albino rats (Histological and immunohistochemical study)[J]. Ultrastruct Pathol, 2023, 47(3): 131-145. DOI: 10.1080/01913123.2023.2184890. |
65. | Oshitari T, Yoshida-Hata N, Yamamoto S. Effect of neurotrophin-4 on endoplasmic reticulum stress-related neuronal apoptosis in diabetic and high glucose exposed rat retinas[J]. Neurosci Lett, 2011, 501(2): 102-106. DOI: 10.1016/j.neulet.2011.06.057. |
66. | Dąbkowska M, Rogińska D, Kłos P, et al. Electrostatic complex of neurotrophin 4 with dendrimer nanoparticles: controlled release of protein in vitro and in vivo[J]. Int J Nanomedicine, 2019, 14: 6117-6131. DOI: 10.2147/ijn.S210140. |
- 1. Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
- 2. Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China[J/OL]. Nat Commun, 2023, 14(1): 4296[2023-07-18]. https://pubmed.ncbi.nlm.nih.gov/37463878/. DOI: 10.1038/s41467-023-39864-w.
- 3. Zhang SX, Wang JJ, Starr CR, et al. The endoplasmic reticulum: homeostasis and crosstalk in retinal health and disease[J/OL]. Prog Retin Eye Res, 2024, 98: 101231[2023-12-12]. https://pubmed.ncbi.nlm.nih.gov/38092262/. DOI: 10.1016/j.preteyeres.2023.101231.
- 4. Chen X, Shi C, He M, et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 352. DOI: 10.1038/s41392-023-01570-w.
- 5. Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov, 2022, 21(2): 115-140. DOI: 10.1038/s41573-021-00320-3.
- 6. Ming SL, Zhang S, Wang Q, et al. Inhibition of USP14 influences alphaherpesvirus proliferation by degrading viral VP16 protein via ER stress-triggered selective autophagy[J]. Autophagy, 2022, 18(8): 1801-1821. DOI: 10.1080/15548627.2021.2002101.
- 7. Ghosh R, Wang L, Wang ES, et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress[J]. Cell, 2014, 158(3): 534-548. DOI: 10.1016/j.cell.2014.07.002.
- 8. Yang S, Jiang H, Bian W, et al. Bip-Yorkie interaction determines oncogenic and tumor-suppressive roles of Ire1/Xbp1s activation[J/OL]. Proc Natl Acad Sci USA, 2022, 119(42): e2202133119 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/36215479/. DOI: 10.1073/pnas.2202133119.
- 9. Bahamondes Lorca VA, Bastidas Mayorga BD, Tong L, et al. UVB-induced eIF2α phosphorylation in keratinocytes depends on decreased ATF4, GADD34 and CREP expression levels[J/OL]. Life Sci, 2021, 286: 120044[2021-10-09]. https://pubmed.ncbi.nlm.nih.gov/34637792/. DOI: 10.1016/j.lfs.2021.120044.
- 10. Ren JL, Chen Y, Zhang LS, et al. Intermedin1-53 attenuates atherosclerotic plaque vulnerability by inhibiting CHOP-mediated apoptosis and inflammasome in macrophages[J]. Cell Death Dis, 2021, 12(5): 436. DOI: 10.1038/s41419-021-03712-w.
- 11. Hayakawa-Ogura M, Tana, Nakagawa T, et al. GADD34 suppresses eIF2α phosphorylation and improves cognitive function in Alzheimer's disease-model mice[J]. Biochem Biophys Res Commun, 2023, 654: 112-119. DOI: 10.1016/j.bbrc.2023.02.077.
- 12. Chiang WC, Chan P, Wissinger B, et al. Achromatopsia mutations target sequential steps of ATF6 activation[J]. Proc Natl Acad Sci USA, 2017, 114(2): 400-405. DOI: 10.1073/pnas.1606387114.
- 13. Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001, 107(7): 881-891. DOI: 10.1016/s0092-8674(01)00611-0.
- 14. Marhfour I, Lopez XM, Lefkaditis D, et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes[J]. Diabetologia, 2012, 55(9): 2417-2420. DOI: 10.1007/s00125-012-2604-3.
- 15. Victor P, Umapathy D, George L, et al. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy[J]. Cell Stress Chaperones, 2021, 26(2): 311-321. DOI: 10.1007/s12192-020-01176-z.
- 16. Nourbakhsh M, Sharifi R, Heydari N, et al. Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress[J]. J Endocrinol Invest, 2022, 45(3): 649-655. DOI: 10.1007/s40618-021-01683-5.
- 17. Hassani SS, Karamali N, Rajabinejad M, et al. Dysregulation of long noncoding RNA NEAT1/miR-199a-5/BiP axis in patients with diabetic neuropathy[J]. Lab Med, 2023, 54(2): 160-165. DOI: 10.1093/labmed/lmac082.
- 18. Bretón-Romero R, Weisbrod RM, Feng B, et al. Liraglutide treatment reduces endothelial endoplasmic reticulum stress and insulin resistance in patients with diabetes mellitus[J/OL]. J Am Heart Assoc, 2018, 7(18): e009379[2018-09-18]. https://pubmed.ncbi.nlm.nih.gov/30371206/. DOI: 10.1161/jaha.118.009379.
- 19. Prasad MK, Victor PS, Ganesh GV, et al. Sodium-glucose cotransporter-2 inhibitor suppresses endoplasmic reticulum stress and oxidative stress in diabetic nephropathy through Nrf2 signaling: a clinical and experimental study[J/OL]. J Clin Pharmacol, 2024, 2024: E1(2024-06-04)[2024-07-23]. https://pubmed.ncbi.nlm.nih.gov/38831713/. DOI: 10.1002/jcph.2465. [published online ahead of print].
- 20. Vikraman PP, Amin K, Mohandas S, et al. Dysregulation of miR-146a is associated with exacerbated inflammation, oxidative and endoplasmic reticulum stress in the progression of diabetic foot ulcer[J]. Wound Repair Regen, 2024, 32(4): 464-474. DOI: 10.1111/wrr.13186.
- 21. Ravi R, Nagarajan H, Muralikumar S, et al. Unveiling the therapeutic potential of a mutated paraoxonase 2 in diabetic retinopathy: defying glycation, mitigating oxidative stress, ER stress and inflammation[J/OL]. Int J Biol Macromol, 2024, 258(Pt 1): 128899[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38141706/. DOI: 10.1016/j.ijbiomac.2023.128899.
- 22. Li B, Wang HS, Li GG, et al. The role of endoplasmic reticulum stress in the early stage of diabetic retinopathy[J]. Acta Diabetol, 2011, 48(2): 103-111. DOI: 10.1007/s00592-009-0170-z.
- 23. Shruthi K, Reddy SS, Reddy GB. Ubiquitin-proteasome system and ER stress in the retina of diabetic rats[J]. Arch Biochem Biophys, 2017, 627: 10-20. DOI: 10.1016/j.abb.2017.06.006.
- 24. Luo J, Zhao L, Chen AY, et al. TCF7L2 variation and proliferative diabetic retinopathy[J]. Diabetes, 2013, 62(7): 2613-2617. DOI: 10.2337/db12-1093.
- 25. Mazzoli V, Zhong LH, Dang VT, et al. Characterization of retinal microvascular complications and the effects of endoplasmic reticulum stress in mouse models of diabetic atherosclerosis[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 49. DOI: 10.1167/iovs.61.10.49.
- 26. Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J/OL]. Antioxidants(Basel), 2020, 9(12): 1244[2020-12-08]. https://pubmed.ncbi.nlm.nih.gov/33302369/. DOI: 10.3390/antiox9121244.
- 27. Li Y, Li HY, Shao J, et al. GRP75 modulates endoplasmic reticulum-mitochondria coupling and accelerates Ca2+-dependent endothelial cell apoptosis in diabetic retinopathy[J/OL]. Biomolecules, 2022, 12(12): 1778[2022-11-29]. https://pubmed.ncbi.nlm.nih.gov/36551205/. DOI: 10.3390/biom12121778.
- 28. Zhang Z, Qian Q, Li M, et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB[J]. Autophagy, 2021, 17(8): 1841-1855. DOI: 10.1080/15548627.2020.1788889.
- 29. Fu D, Yu JY, Yang S, et al. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy[J]. Diabetologia, 2016, 59(10): 2251-2261. DOI: 10.1007/s00125-016-4058-5.
- 30. 庄家圆, 罗向霞, 郑菀睿, 等. 自噬对糖尿病视网膜病变的神经血管单元组成细胞双向作用的研究进展[J]. 中华眼底病杂志, 2024, 40(2): 159-164. DOI: 10.3760/cma.j.cn511434-20230512-00213.Zhuang JY, Luo XX, Zheng WR, et al. Research progress on the bidirectional effect of autophagy on retinal neurovascular unit cells in diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2024, 40(2): 159-164. DOI: 10.3760/cma.j.cn511434-20230512-00213.
- 31. Abdel-Ghaffar A, Elhossary GG, Mahmoud AM, et al. Effects of 4-phenylbutyric acid on the development of diabetic retinopathy in diabetic rats: regulation of endoplasmic reticulum stress-oxidative activation[J]. Arch Physiol Biochem, 2023, 129(4): 964-974. DOI: 10.1080/13813455.2021.1888302.
- 32. 贾璐瑶, 董志军, 张铁民. 内质网应激与糖尿病视网膜病变[J]. 中国实用眼科杂志, 2015, 33(5): 449-452. DOI: 10.3760/cma.j.issn.1006-4443.2015.05.001.Jia LY, Dong ZJ, Zhang TM. Endoplasmic reticulum stress and diabetic retinopathy[J]. Chin J Pract Ophthalmo, 2015, 33(5): 449-452. DOI: 10.3760/cma.j.issn.1006-4443.2015.05.001.
- 33. Miyata Y, Matsumoto K, Kusano S, et al. Regulation of endothelium-reticulum-stress-mediated apoptotic cell death by a polymethoxylated flavone, nobiletin, through the inhibition of nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase in retinal müller cells[J]. Cells, 2021, 10(3): 669. DOI: 10.3390/cells10030669.
- 34. Jiang L, Wang C, Shen X. LncRNA GAS5 suppresses ER stressinduced apoptosis and inflammation by regulating SERCA2b in HG-treated retinal epithelial cell[J]. Mol Med Rep, 2020, 22(2): 1072-1080. DOI: 10.3892/mmr.2020.11163.
- 35. Zou W, Zou C, Zhao M, et al. ASK1 induces retinal microvascular endothelial cell apoptosis through ER stress-associated pathway[J]. Int J Clin Exp Pathol, 2019, 12(4): 1324-1332.
- 36. Yu X, Teng Q, Bao K, et al. Thioredoxin 1 overexpression attenuated diabetes-induced endoplasmic reticulum stress in Müller cells via apoptosis signal-regulating kinase 1[J]. J Cell Biochem, 2023, 124(3): 421-433. DOI: 10.1002/jcb.30378.
- 37. Peng QH, Tong P, Gu LM, et al. Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells[J/OL]. Biosci Rep, 2020, 40(1): BSR20192121[2020-01-31]. https://pubmed.ncbi.nlm.nih.gov/31894851/. DOI: 10.1042/bsr20192121.
- 38. Oubaha M, Miloudi K, Dejda A, et al. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy[J/OL]. Sci Transl Med, 2016, 8(362): 362ra144[2016-10-26]. https://pubmed.ncbi.nlm.nih.gov/27797960/. DOI: 10.1126/scitranslmed.aaf9440.
- 39. Elmasry K, Ibrahim AS, Saleh H, et al. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy[J]. Diabetologia, 2018, 61(5): 1220-1232. DOI: 10.1007/s00125-018-4560-z.
- 40. Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice[J/OL]. J Diabetes Res, 2017, 2017: 1763292 [2017-01-03]. https://pubmed.ncbi.nlm.nih.gov/28127564/. DOI: 10.1155/2017/1763292.
- 41. Wen S, Hu M, Chen C, et al. Neuritin alleviates diabetic retinopathy by regulating endoplasmic reticulum stress in rats[J/OL]. Comb Chem High Throughput Screen, 2024, 2024: E1(2024-01-03)[2021-07-23], https://pubmed.ncbi.nlm.nih.gov/38173210/. DOI: 10.2174/0113862073275316231123060640. [published online ahead of print].
- 42. Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H2O2 and CoCl2 induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells[J/OL]. Int J Biol Macromol, 2023, 240: 124378[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37030468/. DOI: 10.1016/j.ijbiomac.2023.124378.
- 43. Sánchez-Chávez G, Hernández-Ramírez E, Osorio-Paz I, et al. Potential role of endoplasmic reticulum stress in pathogenesis of diabetic retinopathy[J]. Neurochem Res, 2016, 41(5): 1098-1106. DOI: 10.1007/s11064-015-1798-4.
- 44. 高玮, 李春霞. 糖尿病视网膜病变"代谢记忆"与氧化应激的相关性研究现状[J]. 中华眼底病杂志, 2017, 33(3): 327-330. DOI: 10.3760/cma.j.issn.1005-1015.2017.03.030.Gao W, Li CX. Relationship between diabetic retinopathy "metabolic memory" and oxidative stress[J]. Chin J Ocul Fundus Dis, 2017, 33(3): 327-330. DOI: 10.3760/cma.j.issn.1005-1015.2017.03.030.
- 45. Kang MK, Lee EJ, Kim YH, et al. Chrysin ameliorates malfunction of retinoid visual cycle through blocking activation of AGE-RAGE-ER stress in glucose-stimulated retinal pigment epithelial cells and diabetic eyes[J/OL]. Nutrients, 2018, 10(8): 1046[2018-08-08]. https://pubmed.ncbi.nlm.nih.gov/30096827/. DOI: 10.3390/nu10081046.
- 46. Rani EA, Janani R, Chonche MJ, et al. Lactucaxanthin regulates the cascade of retinal oxidative stress, endoplasmic reticulum stress and inflammatory signaling in diabetic rats[J]. Ocul Immunol Inflamm, 2023, 31(2): 320-328. DOI: 10.1080/09273948.2022.2027464.
- 47. Wang C, Wang K, Li P. Blueberry anthocyanins extract attenuated diabetic retinopathy by inhibiting endoplasmic reticulum stress via the miR-182/OGG1 axis[J]. J Pharmacol Sci, 2022, 150(1): 31-40. DOI: 10.1016/j.jphs.2022.06.004.
- 48. Wang Y, Wang L, Guo H, et al. Knockdown of MALAT1 attenuates high-glucose-induced angiogenesis and inflammation via endoplasmic reticulum stress in human retinal vascular endothelial cells[J/OL]. Biomed Pharmacother, 2020, 124: 109699[2020-01-25]. https://pubmed.ncbi.nlm.nih.gov/31986419/. DOI: 10.1016/j.biopha.2019.109699.
- 49. Yang J, Chen C, McLaughlin T, et al. Loss of X-box binding protein 1 in müller cells augments retinal inflammation in a mouse model of diabetes[J]. Diabetologia, 2019, 62(3): 531-543. DOI: 10.1007/s00125-018-4776-y.
- 50. Huang H, Jing G, Wang JJ, et al. ATF4 is a novel regulator of MCP-1 in microvascular endothelial cells[J/OL]. J Inflamm(Lond), 2015, 12: 31[2015-04-17]. https://pubmed.ncbi.nlm.nih.gov/25914608/. DOI: 10.1186/s12950-015-0076-1.
- 51. Trotta MC, Maisto R, Guida F, et al. The activation of retinal HCA2 receptors by systemic beta-hydroxybutyrate inhibits diabetic retinal damage through reduction of endoplasmic reticulum stress and the NLRP3 inflammasome[J/OL]. PLoS One, 2019, 14(1): e0211005[2019-01-18]. https://pubmed.ncbi.nlm.nih.gov/30657794/. DOI: 10.1371/journal.pone.0211005.
- 52. Lenin R, Nagy PG, Alli S, et al. Critical role of endoplasmic reticulum stress in chronic endothelial activation-induced visual deficits in TIE-2-tumor necrosis factor mice[J]. J Cell Biochem, 2018, 119(10): 8460-8471. DOI: 10.1002/jcb.27072.
- 53. 姜逸, 胡娜, 袁琳, 等. 糖尿病视网膜病变过程中神经节细胞内质网应激的研究进展[J]. 上海预防医学, 2020, 32(10): 867-871. DOI: 10.19428/j.cnki.sjpm.2020.19682.Jiang Y, Hu N, Yuan L, et al. Advances in research of endoplasmic reticulum stress of ganglion cells in diabetic retinopathy[J]. Shanghai Journal of Preventive Medicine, 2020, 32(10): 867-871. DOI: 10.19428/j.cnki.sjpm.2020.19682.
- 54. Liu J, Wei L, Wang Z, et al. Protective effect of Liraglutide on diabetic retinal neurodegeneration via inhibiting oxidative stress and endoplasmic reticulum stress[J/OL]. Neurochem Int, 2020, 133: 104624[2019-11-30]. https://pubmed.ncbi.nlm.nih.gov/31794832/. DOI: 10.1016/j.neuint.2019.104624.
- 55. McLaughlin T, Wang G, Medina A, et al. Essential role of XBP1 in maintaining photoreceptor synaptic integrity in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2023, 64(14): 40. DOI: 10.1167/iovs.64.14.40.
- 56. Lenin R, Nagy PG, Jha KA, et al. GRP78 translocation to the cell surface and O-GlcNAcylation of VE-Cadherin contribute to ER stress-mediated endothelial permeability[J/OL]. Sci Rep, 2019, 9(1): 10783[2019-07-25]. https://pubmed.ncbi.nlm.nih.gov/31346222/. DOI: 10.1038/s41598-019-47246-w.
- 57. 雷雨, 郑宏华, 陈小红, 等. 胰高血糖素样肽-1治疗早期糖尿病视网膜病变的临床研究[J]. 眼科新进展, 2018, 38(7): 656-659. DOI: 10.13389/j.cnki.rao.2018.0154.Lei Y, Zheng HH, Chen XH, et al. Glucagon-like peptide-1 (GLP-1) analogues for the treatment of early diabetic retinopathy[J]. Rec Adv Ophthalmol, 2018, 38(7): 656-659. DOI: 10.13389/j.cnki.rao.2018.0154.
- 58. Li R, Yao G, Zhou L, et al. The ghrelin-GHSR-1a pathway inhibits high glucose-induced retinal angiogenesis in vitro by alleviating endoplasmic reticulum stress[J/OL]. Eye Vis (Lond), 2022, 9(1): 20[2022-07-07]. https://pubmed.ncbi.nlm.nih.gov/35668539/. DOI: 10.1186/s40662-022-00291-5.
- 59. 马仙康, 杨丽霞, 崔阳阳, 等. 中医药调控内质网应激防治糖尿病视网膜病变研究进展[J]. 中国中医药图书情报杂志, 2024, 48(1): 261-264. DOI: 10.3969/j.issn.2095-5707.202211050.Ma XK, Yang LX, Cui YY, et al. Research progress in the prevention and treatment of diabetic retinopathy by regulating endoplasmic reticulum stress with TCM[J]. Chinese Journal of Library and Information Science for Traditional Chinese Medicine, 2024, 48(1): 261-264. DOI: 10.3969/j.issn.2095-5707.202211050.
- 60. Wu K, Zhou K, Zhao M, et al. TCF7L2 promotes ER stress signaling in diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 221: 109142 [2022-06-10]. https://pubmed.ncbi.nlm.nih.gov/35691375/. DOI: 10.1016/j.exer.2022.109142.
- 61. Yang H, Liu R, Cui Z, et al. Functional characterization of 58-kilodalton inhibitor of protein kinase in protecting against diabetic retinopathy via the endoplasmic reticulum stress pathway[J]. Mol Vis, 2011, 17: 78-84.
- 62. Wen Z, He X, Wang J, et al. Hyperlipidemia induces proinflammatory responses by activating STING pathway through IRE1α-XBP1 in retinal endothelial cells[J/OL]. J Nutr Biochem, 2023, 112: 109213[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/36370931/. DOI: 10.1016/j.jnutbio.2022.109213.
- 63. Yoo YM, Joo SS. Melatonin can modulate neurodegenerative diseases by regulating endoplasmic reticulum stress[J/OL]. Int J Mol Sci, 2023, 24(3): 2381[2023-01-25]. https://pubmed.ncbi.nlm.nih.gov/36768703/. DOI: 10.3390/ijms24032381.
- 64. Reda S, Elsammak GA, Elsayed TG, et al. A comparative study between the possible protective role of melatonin versus its combination with adipose derived-mesenchymal stem cells on experimentally induced diabetic retinopathy in adult male albino rats (Histological and immunohistochemical study)[J]. Ultrastruct Pathol, 2023, 47(3): 131-145. DOI: 10.1080/01913123.2023.2184890.
- 65. Oshitari T, Yoshida-Hata N, Yamamoto S. Effect of neurotrophin-4 on endoplasmic reticulum stress-related neuronal apoptosis in diabetic and high glucose exposed rat retinas[J]. Neurosci Lett, 2011, 501(2): 102-106. DOI: 10.1016/j.neulet.2011.06.057.
- 66. Dąbkowska M, Rogińska D, Kłos P, et al. Electrostatic complex of neurotrophin 4 with dendrimer nanoparticles: controlled release of protein in vitro and in vivo[J]. Int J Nanomedicine, 2019, 14: 6117-6131. DOI: 10.2147/ijn.S210140.