1. |
Kumbhar P, Kolekar K, Vishwas S, et al. Treatment avenues for age-related macular degeneration: breakthroughs and bottlenecks[J/OL]. Ageing Res Rev, 2024, 98: 102322[2024-05- 08]. https://pubmed.ncbi.nlm.nih.gov/38723753/. DOI: 10.1016/j.arr.2024.102322.
|
2. |
Zhuang X, Pu J, Li M, et al. Association between three-dimensional morphological features and functional indicators of neovascular age-related macular degeneration[J/OL]. Microvasc Res, 2024, 155: 104716[2024-07-14]. https://pubmed.ncbi.nlm.nih.gov/39013515/. DOI: 10.1016/j.mvr.2024.104716.
|
3. |
Willoughby AS, Ying GS, Toth CA, et al. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2015, 122(9): 1846-1853. DOI: 10.1016/j.ophtha.2015.05.042.
|
4. |
Feo A, Stradiotto E, Sacconi R, et al. Subretinal hyperreflective material (SHRM) in retinal and chorioretinal disorders: a comprehensive review[J]. Surv Ophthalmol, 2023, 69(3): 362-377. DOI: 10.1016/j.survophthal.2023.10.013.
|
5. |
Charafeddin W, Nittala MG, Oregon A, et al. Relationship between subretinal hyperreflective material reflectivity and volume in patients with neovascular age-related macular degeneration following anti-vascular endothelial growth factor treatment[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(5): 523-530. DOI: 10.3928/23258160-20150521-03.
|
6. |
Dansingani KK, Tan ACS, Gilani F, et al. Subretinal hyperreflective material imaged with optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 169: 235-248. DOI: 10.1016/j.ajo.2016.06.031.
|
7. |
Kumar JB, Stinnett S, Han JIL, et al. Correlation of subretinal hyperreflective material morphology and visual acuity in neovascular age-related macular degeneration[J]. Retina, 2020, 40(5): 845-856. DOI: 10.1097/IAE.0000000000002552.
|
8. |
Alex D, Giridhar A, Gopalakrishnan M, et al. Subretinal hyperreflective material morphology in neovascular age-related macular degeneration: a case control study[J]. Indian J Ophthalmol, 2021, 69(7): 1862-1866. DOI: 10.4103/ijo.IJO_3156_20.
|
9. |
Coscas F, Lupidi M, Boulet JF, et al. Optical coherence tomography angiography in exudative age-related macular degeneration: a predictive model for treatment decisions[J]. Br J Ophthalmol, 2019, 103(9): 1342-1346. DOI: 10.1136/bjophthalmol-2018-313065.
|
10. |
Al-Sheikh M, Iafe NA, Phasukkijwatana N, et al. Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography[J]. Retina, 2018, 38(2): 220-230. DOI: 10.1097/IAE.0000000000001628.
|
11. |
Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data[J]. Ophthalmology, 2020, 127(5): 616-636. DOI: 10.1016/j.ophtha.2019.11.004.
|
12. |
Pu J, Zhuang X, Li M, et al. Analyzing formation and absorption of avascular subretinal hyperreflective material in nAMD from OCTA-based insights[J]. Am J Ophthalmol, 2024, 267: 192-203. DOI: 10.1016/j.ajo.2024.06.019.
|
13. |
Pu J, Zhuang X, Li M, et al. Prognostic value of macular neovascularisation characteristics for photoreceptor integrity in nAMD: a prospective observational study[J/OL]. Br J Ophthalmol, 2024, 2024: bjo-2024-326319[2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39694604/. DOI: 10.1136/bjo-2024-326319.
|
14. |
Zhang Y, Chen A, Zou M, et al. Disease burden of age-related macular degeneration in China from 1990 to 2019: findings from the global burden of disease study[J/OL]. J Glob Health, 2021, 11: 08009[2021-10-30]. https://pubmed.ncbi.nlm.nih.gov/34737869/. DOI: 10.7189/jogh.11.08009.
|
15. |
Amoaku WM, Chakravarthy U, Gale R, et al. Defining response to anti-VEGF therapies in neovascular AMD[J]. Eye, 2015, 29(6): 721-731. DOI: 10.1038/eye.2015.48.
|
16. |
Montolío-Marzo S, Gallego-Pinazo R, Palacios-Pozo E, et al. Advantages of optical coherence tomography as a high dynamic range imaging modality in subretinal hyperreflective material[J]. Retina, 2023, 43(4): 641-648. DOI: 10.1097/IAE.0000000000003705.
|
17. |
Pokroy R, Mimouni M, Barayev E, et al. Prognostic value of subretinal hyperreflective material in neovascular age-related macular degeneration treated with bevacizumab[J]. Retina, 2018, 38(8): 1485-1491. DOI: 10.1097/IAE.0000000000001748.
|
18. |
Zudaire E, Gambardella L, Kurcz C, et al. A computational tool for quantitative analysis of vascular networks[J/OL]. PLoS One, 2011, 6(11): e27385[2011-11-16]. https://pubmed.ncbi.nlm.nih.gov/22110636/. DOI: 10.1371/journal.pone.0027385.
|
19. |
Gould DJ, Vadakkan TJ, Poché RA, et al. Multifractal and lacunarity analysis of microvascular morphology and remodeling[J]. Microcirculation, 2011, 18(2): 136-151. DOI: 10.1111/j.1549-8719.2010.00075.x.
|
20. |
Choi M, Kim SW, Yun C, et al. OCT angiography features of neovascularization as predictive factors for frequent recurrence in age-related macular degeneration[J]. Am J Ophthalmol, 2020, 213: 109-119. DOI: 10.1016/j.ajo.2020.01.012.
|
21. |
Choi M, Kim SW, Yun C, et al. Predictive role of optical coherence tomography angiography for exudation recurrence in patients with type 1 neovascular age-related macular degeneration treated with pro-re-nata protocol[J]. Eye, 2023, 37(1): 34-41. DOI: 10.1038/s41433-021-01879-2.
|
22. |
Spaide RF. Optical coherence tomography angiography signs of vascular abnormalization with antiangiogenic therapy for choroidal neovascularization[J]. Am J Ophthalmol, 2015, 160(1): 6-16. DOI: 10.1016/j.ajo.2015.04.012.
|
23. |
Huveneers S, Phng LK. Endothelial cell mechanics and dynamics in angiogenesis[J/OL]. Curr Opin Cell Biol, 2024, 91: 102441[2024-07-28]. https://pubmed.ncbi.nlm.nih.gov/39342870/. DOI: 10.1016/j.ceb.2024.102441.
|
24. |
Pauleikhoff D, Gunnemann ML, Ziegler M, et al. Morphological changes of macular neovascularization during long-term anti-VEGF-therapy in neovascular age-related macular degeneration[J/OL]. PLoS One, 2023, 18(12): e0288861[2023-12-22]. hhttps://pubmed.ncbi.nlm.nih.gov/38134207/. DOI: 10.1371/journal.pone.0288861.
|
25. |
Tsuboi K, You QS, Wang J, et al. Quantitative evaluation of type 1 and type 2 choroidal neovascularization components under treatment with projection-resolved OCT angiography[J/OL]. Invest Ophthalmol Vis Sci, 2024, 65(11): 32[2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/39302645/. DOI: 10.1167/iovs.65.11.32.
|
26. |
Teo KYC, Zhao JZ, Klose G, et al. Polypoidal choroidal vasculopathy: evaluation based on 3-dimensional reconstruction of OCT angiography[J]. Ophthalmol Retina, 2024, 8(2): 98-107. DOI: 10.1016/j.oret.2023.11.001.
|