Optic nerve diseases seriously affect visual function, and early accurate diagnosis and effective follow-up are very important for treatment and prognosis. Optical coherence tomography (OCT) and OCT angiography (OCTA) are non-invasive and high-resolution imaging techniques, which play increasingly important roles in the diagnosis and treatment of optic nerve diseases. OCT can visually display the structure of retinal nerve fiber layer and macular area, accurately measure the thickness of nerve fiber layer and structural parameters of macular area. OCTA can clearly display the changes of microblood flow around optic disc and retinal blood vessels. The combined use of these two technologies will not only help diagnose and monitor optic nerve diseases, but also deepen our understanding of the pathogenesis of optic nerve diseases. In view of the fact that the application of OCT and OCTA in neuro-ophthalmic diseases involving the optic nerve is still in the development stage in the domestic medical community, it is urgent to formulate a guiding document to regulate and promote the application of these two technologies. To this end, based on a systematic literature review and combined with the current clinical practice of OCT and OCTA in China, we formulated the Expert consensus on the clinical application of optical coherence tomography and angiography in optic nerve diseases. This consensus comprehensively expounds the technical principles and main measurement indicators of OCT and OCTA, the specific application, examination specifications and limitations of OCT and OCTA in clinical diagnosis and follow-up of neuroophthalmic diseases involving optic nerve, aiming to improve the application level of OCT and OCTA by doctors, especially neuroophthalmologists, and better play the role of this advanced imaging technology in neuroophthalmology.
Citation: Neuro-ophthalmology Group of Ophthalmology Branch of Chinese Medical Association. Expert consensus on the clinical application of optical coherence tomography and angiography in optic nerve diseases (2025). Chinese Journal of Ocular Fundus Diseases, 2025, 41(5): 329-342. doi: 10.3760/cma.j.cn511434-20250107-00008 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | |
9. | |
10. | |
11. | |
12. | |
13. | Oertel FC, Zimmermann HG, Motamedi S, et al. Retinal changes in double-antibody seronegative neuromyelitis optica spectrum disorders[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(5): e200273[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38941573/. DOI: 10.1212/NXI.0000000000200273. |
14. | |
15. | Oertel FC, Specovius S, Zimmermann HG, et al. Retinal optical coherence tomography in neuromyelitis optica[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2021, 9(2): e1132[2021-12-22]. https://pubmed.ncbi.nlm.nih.gov/34526385/. DOI: 10.1212/NXI.0000000000001068. |
16. | |
17. | |
18. | Wolff B, Azar G, Vasseur V, et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study[J/OL]. J Ophthalmol, 2014, 2014: 395189[2014-02-23]. https://pubmed.ncbi.nlm.nih.gov/24701345/. DOI: 10.1155/2014/395189. |
19. | Chen JJ, Sotirchos ES, Henderson AD, et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and multiple sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS[J/OL]. Mult Scler Relat Disord, 2022, 58: 103525[2022-01-11]. https://pubmed.ncbi.nlm.nih.gov/35038647/. DOI: 10.1016/j.msard.2022.103525. |
20. | Feng C, Chen Q, Zhao G, et al. Clinical characteristics of optic neuritis phenotypes in a 3-year follow-up Chinese cohort[J/OL]. Sci Rep, 2021, 11(1): 14603[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34272440/. DOI: 10.1038/s41598-021-93976-1. |
21. | |
22. | |
23. | |
24. | |
25. | |
26. | |
27. | |
28. | |
29. | |
30. | |
31. | |
32. | |
33. | |
34. | |
35. | |
36. | |
37. | |
38. | |
39. | |
40. | |
41. | |
42. | |
43. | |
44. | Abri Aghdam K, Aghajani A, Zand A, et al. Application of optical coherence tomography angiography in true and pseudo-optic disc swelling[J/OL]. J Ophthalmol, 2024, 2024: 1164635[2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/39380943/. DOI: 10.1155/2024/1164635. |
45. | |
46. | |
47. | |
48. | |
49. | |
50. | Molaie AM, Pramil V, Hedges TR 3rd, et al. Vitreoretinal findings in nonarteritic ischemic optic neuropathy[J/OL]. J Neuroophthalmol, 2022, 42(1): e124-e129[2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/34001734/. DOI: 10.1097/WNO.0000000000001264. |
51. | |
52. | Lu ES, Katz R, Miller JB, et al. Peripapillary choroidal vascularity and visual correlates in non-arteritic anterior ischemic optic neuropathy using swept-source optical coherence tomography[J/OL]. Front Ophthalmol (Lausanne), 2022, 2: 848040[2022-04-03]. https://pubmed.ncbi.nlm.nih.gov/38173700/. DOI: 10.3389/fopht.2022.848040. |
53. | |
54. | |
55. | |
56. | |
57. | |
58. | |
59. | |
60. | Zawadzka I, Konopinska J. From the past to the present, optical coherence tomography in glaucoma: a practical guide to a common disease[J/OL]. F1000Res, 2024, 12: 1186[2024-02-19]. https://pubmed.ncbi.nlm.nih.gov/38511134/. DOI: 10.12688/f1000research.139975.2. |
61. | |
62. | |
63. | |
64. | |
65. | |
66. | |
67. | |
68. | |
69. | |
70. | |
71. | |
72. | |
73. | |
74. | |
75. | |
76. | |
77. | Lee GI, Kim J, Lee D, et al. Ganglion cell inner plexiform layer thickness measured by optical coherence tomography to predict visual outcome in chiasmal compression[J/OL]. Sci Rep, 2022, 12(1): 14826[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36050400/. DOI: 10.1038/s41598-022-17193-0. |
78. | Cennamo G, Solari D, Montorio D, et al. The role of OCT- angiography in predicting anatomical and functional recovery after endoscopic endonasal pituitary surgery: a 1-year longitudinal study[J/OL]. PLoS One, 2021, 16(12): e0260029[2021-12-02]. https://pubmed.ncbi.nlm.nih.gov/34855775/. DOI: 10.1371/journal.pone.0260029. |
79. | |
80. | |
81. | |
82. | |
83. | |
84. | |
85. | |
86. | |
87. | |
88. | |
89. | |
90. | |
91. | |
92. | |
93. | |
94. | |
95. | Cesareo M, Giannini C, Di Marino M, et al. Optical coherence tomography angiography in the multimodal assessment of the retinal posterior pole in autosomal dominant optic atrophy[J/OL]. Acta Ophthalmol, 2022, 100(3): e798-e806[2021-07-11]. https://pubmed.ncbi.nlm.nih.gov/34250739/. DOI: 10.1111/aos.14972. |
96. | Lee JY, Cho K, Park KA, et al. Analysis of retinal layer thicknesses and their clinical correlation in patients with traumatic optic neuropathy[J/OL]. PLoS One, 2016, 11(6): e0157388[2016-06-13]. https://pubmed.ncbi.nlm.nih.gov/27295139/. DOI: 10.1371/journal.pone.0157388. |
97. | |
98. | |
99. | Liu X, Wang J, Zhang W, et al. Prognostic factors of traumatic optic neuropathy based on multimodal analysis-especially the influence of postoperative dressing change and optic nerve blood supply on prognosis[J/OL]. Front Neurol, 2023, 14: 1114384[2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/36793493/. DOI: 10.3389/fneur.2023.1114384. |
100. | Ye J, Zhu H, Yan W, et al. Retinal peripapillary microvasculature in indirect traumatic optic neuropathy predicted prognosis of endoscopic trans-ethmosphenoid optic canal decompression[J/OL]. Acta Ophthalmol, 2023, 101(2): e226-e235[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36053015/. DOI: 10.1111/aos.15243. |
101. | |
102. | |
103. | |
104. | |
105. | |
106. | Mehta N, Waheed NK. Diversity in optical coherence tomography normative databases: moving beyond race[J/OL]. Int J Retina Vitreous, 2020, 6: 5[2020-04-05]. https://pubmed.ncbi.nlm.nih.gov/32158551/. DOI: 10.1186/s40942-020-0208-5. |
107. | |
108. | |
109. | Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software[J/OL]. PLoS One, 2015, 10(6): e0129005[2015-06-15]. https://pubmed.ncbi.nlm.nih.gov/26076457/. DOI: 10.1371/journal.pone.0129005. |
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13. Oertel FC, Zimmermann HG, Motamedi S, et al. Retinal changes in double-antibody seronegative neuromyelitis optica spectrum disorders[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(5): e200273[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38941573/. DOI: 10.1212/NXI.0000000000200273.
- 14.
- 15. Oertel FC, Specovius S, Zimmermann HG, et al. Retinal optical coherence tomography in neuromyelitis optica[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2021, 9(2): e1132[2021-12-22]. https://pubmed.ncbi.nlm.nih.gov/34526385/. DOI: 10.1212/NXI.0000000000001068.
- 16.
- 17.
- 18. Wolff B, Azar G, Vasseur V, et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study[J/OL]. J Ophthalmol, 2014, 2014: 395189[2014-02-23]. https://pubmed.ncbi.nlm.nih.gov/24701345/. DOI: 10.1155/2014/395189.
- 19. Chen JJ, Sotirchos ES, Henderson AD, et al. OCT retinal nerve fiber layer thickness differentiates acute optic neuritis from MOG antibody-associated disease and multiple sclerosis: RNFL thickening in acute optic neuritis from MOGAD vs MS[J/OL]. Mult Scler Relat Disord, 2022, 58: 103525[2022-01-11]. https://pubmed.ncbi.nlm.nih.gov/35038647/. DOI: 10.1016/j.msard.2022.103525.
- 20. Feng C, Chen Q, Zhao G, et al. Clinical characteristics of optic neuritis phenotypes in a 3-year follow-up Chinese cohort[J/OL]. Sci Rep, 2021, 11(1): 14603[2021-07-16]. https://pubmed.ncbi.nlm.nih.gov/34272440/. DOI: 10.1038/s41598-021-93976-1.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44. Abri Aghdam K, Aghajani A, Zand A, et al. Application of optical coherence tomography angiography in true and pseudo-optic disc swelling[J/OL]. J Ophthalmol, 2024, 2024: 1164635[2024-09-30]. https://pubmed.ncbi.nlm.nih.gov/39380943/. DOI: 10.1155/2024/1164635.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50. Molaie AM, Pramil V, Hedges TR 3rd, et al. Vitreoretinal findings in nonarteritic ischemic optic neuropathy[J/OL]. J Neuroophthalmol, 2022, 42(1): e124-e129[2022-04-01]. https://pubmed.ncbi.nlm.nih.gov/34001734/. DOI: 10.1097/WNO.0000000000001264.
- 51.
- 52. Lu ES, Katz R, Miller JB, et al. Peripapillary choroidal vascularity and visual correlates in non-arteritic anterior ischemic optic neuropathy using swept-source optical coherence tomography[J/OL]. Front Ophthalmol (Lausanne), 2022, 2: 848040[2022-04-03]. https://pubmed.ncbi.nlm.nih.gov/38173700/. DOI: 10.3389/fopht.2022.848040.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60. Zawadzka I, Konopinska J. From the past to the present, optical coherence tomography in glaucoma: a practical guide to a common disease[J/OL]. F1000Res, 2024, 12: 1186[2024-02-19]. https://pubmed.ncbi.nlm.nih.gov/38511134/. DOI: 10.12688/f1000research.139975.2.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77. Lee GI, Kim J, Lee D, et al. Ganglion cell inner plexiform layer thickness measured by optical coherence tomography to predict visual outcome in chiasmal compression[J/OL]. Sci Rep, 2022, 12(1): 14826[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36050400/. DOI: 10.1038/s41598-022-17193-0.
- 78. Cennamo G, Solari D, Montorio D, et al. The role of OCT- angiography in predicting anatomical and functional recovery after endoscopic endonasal pituitary surgery: a 1-year longitudinal study[J/OL]. PLoS One, 2021, 16(12): e0260029[2021-12-02]. https://pubmed.ncbi.nlm.nih.gov/34855775/. DOI: 10.1371/journal.pone.0260029.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95. Cesareo M, Giannini C, Di Marino M, et al. Optical coherence tomography angiography in the multimodal assessment of the retinal posterior pole in autosomal dominant optic atrophy[J/OL]. Acta Ophthalmol, 2022, 100(3): e798-e806[2021-07-11]. https://pubmed.ncbi.nlm.nih.gov/34250739/. DOI: 10.1111/aos.14972.
- 96. Lee JY, Cho K, Park KA, et al. Analysis of retinal layer thicknesses and their clinical correlation in patients with traumatic optic neuropathy[J/OL]. PLoS One, 2016, 11(6): e0157388[2016-06-13]. https://pubmed.ncbi.nlm.nih.gov/27295139/. DOI: 10.1371/journal.pone.0157388.
- 97.
- 98.
- 99. Liu X, Wang J, Zhang W, et al. Prognostic factors of traumatic optic neuropathy based on multimodal analysis-especially the influence of postoperative dressing change and optic nerve blood supply on prognosis[J/OL]. Front Neurol, 2023, 14: 1114384[2023-01-30]. https://pubmed.ncbi.nlm.nih.gov/36793493/. DOI: 10.3389/fneur.2023.1114384.
- 100. Ye J, Zhu H, Yan W, et al. Retinal peripapillary microvasculature in indirect traumatic optic neuropathy predicted prognosis of endoscopic trans-ethmosphenoid optic canal decompression[J/OL]. Acta Ophthalmol, 2023, 101(2): e226-e235[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36053015/. DOI: 10.1111/aos.15243.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106. Mehta N, Waheed NK. Diversity in optical coherence tomography normative databases: moving beyond race[J/OL]. Int J Retina Vitreous, 2020, 6: 5[2020-04-05]. https://pubmed.ncbi.nlm.nih.gov/32158551/. DOI: 10.1186/s40942-020-0208-5.
- 107.
- 108.
- 109. Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software[J/OL]. PLoS One, 2015, 10(6): e0129005[2015-06-15]. https://pubmed.ncbi.nlm.nih.gov/26076457/. DOI: 10.1371/journal.pone.0129005.