1. |
Liaska A, Petrou P, Georgakopoulos CD, et al. β-Thalassemia and ocular implications: a systematic review[J/OL]. BMC Ophthalmol, 2016, 16: 102[2016-07-08]. https://doi.org/10.1186/s12886-016-0285-2. DOI: 10.1186/s12886-016-0285-2.
|
2. |
Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia[J]. Lancet, 2018, 391(10116): 155-167. DOI: 10.1016/S0140-6736(17)31822-6.
|
3. |
Capolongo G, Zacchia M, Beneduci A, et al. Urinary metabolic profile of patients with transfusion dependent β-thalassemia major undergoing deferasirox therapy[J]. Kidney Blood Press Res, 2020, 45(3): 455-466. DOI: 10.1159/000507369.
|
4. |
Kurnia KH, Elvioza, Sidik M, et al. Novel retinal findings in β-thalassemia major: older age and higher ferritin level as the risk factors[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(9): 2633-2641. DOI: 10.1007/s00417-021-05141-z.
|
5. |
Kassab-Chekir A, Laradi S, Ferchichi S, et al. Oxidant, antioxidant status and metabolic data in patients with beta-thalassemia[J]. Clinica Chimica Acta, 2003, 338(1-2): 79-86. DOI: 10.1016/j.cccn.2003.07.010.
|
6. |
Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors[J]. Blood Rev, 2013, 27(1): 41-53. DOI: 10.1016/j.blre.2012.12.003.
|
7. |
李慧, 陈沁, 喻晓兵, 等. 糖尿病视网膜病变黄斑区血流密度和黄斑中心凹无血管区面积的变化[J]. 中华糖尿病杂志, 2017, 9(7): 435-439. DOI: 10.3760/cma.j.issn.1674-5809.2017.07.007.Li H, Chen Q, Yu XB, et al. Changes in the parafoveal and perifoveal vessel density and the area of foveal avascular zone in patients with diabetic retinopathy[J]. Chin J Diabeter Mellitus, 2017, 9(7): 435-439. DOI: 10.3760/cma.j.issn.1674-5809.2017.07.007.
|
8. |
Lin Y, Ma D, Wang H, et al. Spatial positional relationship between macular superficial vessel density and ganglion cell-inner plexiform layer thickness in primary angle closure glaucoma[J]. Int Ophthalmol, 2022, 42(1): 103-112. DOI: 10.1007/s10792-021-02005-7.
|
9. |
Liu LL, Wang YC, Cao M, et al. Analysis of macular retinal thickness and microvascular system changes in children with monocular hyperopic anisometropia and severe amblyopia[J/OL]. Dis Markers, 2022, 2022: 9431044[2022-01-17]. https://pubmed.ncbi.nlm.nih.gov/35082933/. DOI: 10.1155/2022/9431044.
|
10. |
Wang H, Hu XF, Xin H, et al. Assessment of choroidal vascularity and choriocapillaris blood perfusion in Chinese preschool-age anisometropic hyperopic amblyopia children[J/OL]. Front Pediatr, 2022, 10: 1056888[2022-11-17]. https://pubmed.ncbi.nlm.nih.gov/36467467/. DOI: 10.3389/fped.2022.1056888.
|
11. |
Wang H, Tao Y. Choroidal structural changes correlate with severity of diabetic retinopathy in diabetes mellitus[J/OL]. BMC Ophthalmol, 2019, 19(1): 186[2019-08-16]. https://pubmed.ncbi.nlm.nih.gov/31419954/. DOI: 10.1186/s12886-019-1189-8.
|
12. |
Hou H, Moghimi S, Zangwill LM, et al. Macula vessel density and thickness in early primary open angle glaucoma[J]. Am J Ophthalmol, 2019, 199: 120-132. DOI: 10.1016/j.ajo.2018.11.012.
|
13. |
Akritidou F, Praidou A, Papamitsou T, et al. Ocular manifestations in patients with transfusion-dependent β-thalassemia[J]. Hippokratia, 2021, 25(2): 79-82.
|
14. |
Di Nicola M, Barteselli G, Dell’Arti L, et al. Functional and structural abnormalities in deferoxamine retinopathy: a review of the literature[J/OL]. Biomed Res Int, 2015, 2015: 249617[2015-06-08]. https://pubmed.ncbi.nlm.nih.gov/26167477/. DOI: 10.1155/2015/249617.
|
15. |
Tate DJ, Newsome DA. A novel zinc compound (zinc monocysteine) enhances the antioxidant capacity of human retinal pigment epithelial cells[J]. Curr Eye Res, 2006, 31(7-8): 675-683. DOI: 10.1080/02713680600801024.
|
16. |
Origa R, Galanello R, Ganz T, et al. Liver iron concentrations and urinary hepcidin in beta-thalassemia[J]. Haematologica, 2007, 92(5): 583-588. DOI: 10.3324/haematol.10842.
|
17. |
Baath JS, Lam WC, Kirby M, et al. Deferoxamine-related ocular toxicity: incidence and outcome in a pediatric population[J]. Retina, 2008, 28(6): 894-899. DOI: 10.1097/IAE.0b013e3181679f67.
|
18. |
Cennamo G, Montorio D, Mazzella G, et al. Retinal and choriocapillaris vascular changes in patients affected by different clinical phenotypes of β-thalassemia: an optical coherence tomography angiography study[J/OL]. Biology, 2021, 10(4): 276[2021-03-28]. https://pubmed.ncbi.nlm.nih.gov/33800572/. DOI: 10.3390/biology10040276.
|
19. |
AttaAllah HR, Mousa SO, Omar IAN. Macular microvascular changes in children with transfusion-dependent beta-thalassemia[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(11): 3283-3293. DOI: 10.1007/s00417-021-05275-0.
|
20. |
Cho M, Aaker G, DʼAmico DJ, et al. Peripheral vascular abnormalities in β-thalassemia major detected by ultra wide-field fundus imaging[J]. Retin Cases Brief Rep, 2011, 5(4): 339-342. DOI: 10.1097/ICB.0b013e3181ff0979.
|
21. |
Güler Kazancı E, Korkmaz MF, Can ME. Optical coherence tomography angiography findings in young β-thalassemia patients[J]. Eur J Ophthalmol, 2020, 30(3): 600-607. DOI: 10.1177/1120672119899375.
|
22. |
Haji LO, Polus RK, Mohammed NS. Study of platelet activation, hypercoagulable state, and pulmonary hypertension in patients with transfusion-dependent beta-thalassemia[J]. Iraqi J Hematol, 2024, 13(2): 334-339. DOI: 10.1016/j.hemonc.2017.05.028.
|
23. |
Samara WA, Say EAT, Khoo CTL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2188-2195. DOI: 10.1097/IAE.0000000000000847.
|
24. |
Stana D, Potop V, Istrate SL, et al. Foveal avascular zone area measurements using OCT angiography in patients with type 2 diabetes mellitus associated with essential hypertension[J]. Rom J Ophthalmol, 2019, 63(4): 354-359. DOI: 10.22336/rjo.2019.55.
|
25. |
Georgalas I, Makris G, Papaconstantinou D, et al. A pilot optical coherence tomography angiography study on superficial and deep capillary plexus foveal avascular zone in patients with beta-thalassemia major[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3887-3896. DOI: 10.1167/iovs.19-27291.
|
26. |
Rahi AH, Hungerford JL, Ahmed AI. Ocular toxicity of desferrioxamine: light microscopic histochemical and ultrastructural findings[J]. Br J Ophthalmol, 1986, 70(5): 373-381. DOI: 10.1136/bjo.70.5.373.
|
27. |
Haghpanah S, Zekavat OR, Safaei S, et al. Optical coherence tomography findings in patients with transfusion-dependent β-thalassemia[J/OL]. BMC Ophthalmol, 2022, 22(1): 279[2022-06-24]. https://pubmed.ncbi.nlm.nih.gov/35751049/. DOI: 10.1186/s12886-022-02490-z.
|
28. |
Lim JI, Cao D. Analysis of retinal thinning using spectral-domain optical coherence tomography imaging of sickle cell retinopathy eyes compared to age- and race-matched control eyes[J]. Am J Ophthalmol, 2018, 192: 229-238. DOI: 10.1016/j.ajo.2018.03.013.
|
29. |
Ghasemi Falavarjani K, Scott AW, Wang K, et al. Correlation of multimodal imaging in sickle cell retinopathy[J]. Retina, 2016, 36(S1): S111-117. DOI: 10.1097/IAE.0000000000001230.
|
30. |
Ulusoy MO, Türk H, Kıvanç SA. Spectral domain optical coherence tomography findings in turkish sickle-cell disease and beta thalassemia major patients[J]. J Curr Ophthalmol, 2019, 31(3): 275-280. DOI: 10.1016/j.joco.2019.01.012.
|
31. |
Korkmaz MF, Can ME, Kazancı EG. Effects of iron deficiency anemia on peripapillary and macular vessel density determined using optical coherence tomography angiography on children[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(9): 2059-2068. DOI: 10.1007/s00417-020-04633-8.
|
32. |
Minvielle W, Caillaux V, Cohen SY, et al Macular microangiopathy in sickle cell disease using optical coherence tomography angiography[J]. Am J Ophthalmol, 2016, 164: 137-144. DOI: 10.1016/j.ajo.2015.12.023.
|
33. |
Bezci Aygün F, Algedik Tokyürek MÖ, Unal Ş, et al. Retinal and choroidal circulation impairments in fanconi anemia[J]. Am J Ophthalmol, 2025, 272: 166-175. DOI: 10.1016/j.ajo.2025.01.017.
|
34. |
Delaey C, Van De Voorde J. Regulatory mechanisms in the retinal and choroidal circulation[J]. Ophthalmic Res, 2000, 32(6): 249-256. DOI: 10.1159/000055622.
|
35. |
Lutty GA, Otsuji T, Taomoto M, et al. Mechanisms for sickle red blood cell retention in choroid[J]. Curr Eye Res, 2002, 25(3): 163-171. DOI: 10.1076/ceyr.25.3.163.13481.
|
36. |
Wajer SD, Taomoto M, McLeod DS, et al. Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures[J]. Microvasc Res, 2000, 60(3): 281-293. DOI: 10.1006/mvre.2000.2270.
|
37. |
黄厚斌. 提高对睫状后动脉阻塞及脉络膜缺血的认识(上)[J]. 眼科, 2024, 33(2): 81-86. DOI: 10.13281/j.cnki.issn.1004-4469.2024.02.001.Huang HB. Improving the recognition of posterior ciliary artery occlusion and choroidal ischemia (Ι)[J]. Ophthalmol Chin, 2024, 33(2): 81-86. DOI: 10.13281/j.cnki.issn.1004-4469.2024.02.001.
|
38. |
Arifoglu HB, Kucuk B, Duru N, et al. Assessing posterior ocular structures in β-thalassemia minor[J]. Int Ophthalmol, 2018, 38(1): 119-125. DOI: 10.1007/s10792-016-0431-0.
|
39. |
Simsek A, Tekin M, Bilak S, et al. Choroidal thickness in children with beta thalassemia major[J]. Optom Vis Sci, 2016, 93(6): 600-606. DOI: 10.1097/OPX.0000000000000833.
|
40. |
Yumusak E, Ciftci A, Yalcin S, et al. Changes in the choroidal thickness in reproductive-aged women with iron-deficiency anemia[J/OL]. BMC Ophthalmol, 2015, 15(1): 186[2015-12-29]. https://pubmed.ncbi.nlm.nih.gov/26715579/. DOI: 10.1186/s12886-015-0163-3.
|
41. |
Troilo D, Nickla DL, Wildsoet CF. Choroidal thickness changes during altered eye growth and refractive state in a primate[J]. Invest Ophthalmol Vis Sci, 2000, 41(6): 1249-1258.
|
42. |
Su L, Ji YS, Tong N, et al. Quantitative assessment of the retinal microvasculature and choriocapillaris in myopic patients using swept-source optical coherence tomography angiography[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(6): 1173-1180. DOI: 10.1007/s00417-020-04639-2.
|
43. |
He J, Chen Q, Yin Y, et al. Association between retinal microvasculature and optic disc alterations in high myopia[J]. Eye, 2019, 33(9): 1494-1503. DOI: 10.1038/s41433-019-0438-7.
|
44. |
Lam DSC, Leung KS, Mohamed S, et al. Regional variations in the relationship between macular thickness measurements and myopia[J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 376-382. DOI: 10.1167/iovs.06-0426.
|
45. |
……[M]//刘祖国. 眼科临床解剖学. 济南: 山东科学技术出版社, 2020: 56-58.……[M]//Liu ZG. Clinical anatomy of the eye. Jinan: Shandong Science and Technology Press, 2020: 56-58.
|
46. |
Mauget-Faÿsse M, Arej N, Paternoster M, et al. Retinal and choroidal blood flow variations after an endurance exercise: a real-life pilot study at the Paris Marathon[J]. J Sci Med Sport, 2021, 24(11): 1100-1104. DOI: 10.1016/j.jsams.2021.03.013.
|
47. |
中华医学会血液学分会红细胞疾病(贫血)学组, 刘容容, 李莉娟, 等. 中国输血依赖型β地中海贫血诊断与治疗指南(2022年版)[J]. 中华血液学杂志, 2023, 43(11): 889-896. DOI: 10.3760/cma.j.issn.0253-2727.2022.11.002.Chinese Society of Hematology, Chinese Medical Association, Red Blood Cell Diseases (Anemia) Group, Liu RR, Li LJ, et al. Chinese guidelines for the diagnosis and treatment of transfusion-dependent β-thalassemia (2022 edition)[J]. Chin J Hematol, 2023, 43(11): 889-896. DOI: 10.3760/cma.j.issn.0253-2727.2022.11.002.
|