1. |
Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China[J/OL]. Nat Commun, 2023, 14(1): 4296[2023-07-18]. https://pubmed.ncbi.nlm.nih.gov/37463878/. DOI: 10.1038/s41467-023-39864-w.
|
2. |
Li YN, Liang HW, Zhang CL, et al. Ophthalmic solution of smart supramolecular peptides to capture semaphorin 4D against diabetic retinopathy[J/OL]. Adv Sci (Weinh), 2023, 10(3): e2203351[2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/36437109/. DOI: 10.1002/advs.202203351.
|
3. |
Binet F, Cagnone G, Crespo-Garcia S, et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy[J/OL]. Science, 2020, 369(6506): eaay5356[2020-08-21]. https://pubmed.ncbi.nlm.nih.gov/32820093/. DOI: 10.1126/science.aay5356.
|
4. |
Yamaguchi M, Nakao S, Arima M, et al. Heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation[J]. Diabetologia, 2024, 67(10): 2329-2345. DOI: 10.1007/s00125-024-06215-3.
|
5. |
Tan JL, Yi J, Cao XY, et al. Celastrol: The new dawn in the treatment of vascular remodeling diseases[J/OL]. Biomed Pharmacother, 2023, 158: 114177[2023-02-01]. https://pubmed.ncbi.nlm.nih.gov/36809293/. DOI: 10.1016/j.biopha.2022.114177.
|
6. |
Deng H, Eichmann A, Schwartz MA. Fluid shear stress-regulated vascular remodeling: past, present, and future[J]. Arterioscler Thromb Vasc Biol, 2025, 45(6): 882-900. DOI: 10.1161/ATVBAHA.125.322557.
|
7. |
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy[J]. Nat Rev Endocrinol, 2021, 17(4): 195-206. DOI: 10.1038/s41574-020-00451-4.
|
8. |
Blot G, Karadayi R, Przegralek L, et al. Perilipin 2–positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration[J/OL]. J Clin Invest, 2023, 133(19): e161348[2023-10-05]. https://pubmed.ncbi.nlm.nih.gov/37781924/. DOI: 10.1172/JCI161348.
|
9. |
Rajesh A, Droho S, Lavine JA. Macrophages in close proximity to the vitreoretinal interface are potential biomarkers of inflammation during retinal vascular disease[J/OL]. J Neuroinflammation, 2022, 19(1): 203[2022-08-08]. https://pubmed.ncbi.nlm.nih.gov/35941655/. DOI: 10.1186/s12974-022-02562-3.
|
10. |
Mills SA, Jobling AI, Dixon MA, et al. Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy[J/OL]. Proc Natl Acad Sci USA, 2021, 118(51): e2112561118[2021-12-21]. https://pubmed.ncbi.nlm.nih.gov/34903661/. DOI: 10.1073/pnas.2112561118.
|
11. |
Heieis GA, Patente TA, Almeida L, et al. Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection[J/OL]. Nat Commun, 2023, 14(1): 5627[2023-09-12]. https://pubmed.ncbi.nlm.nih.gov/37699869/. DOI: 10.1038/s41467-023-41353-z.
|
12. |
Garrido-Trigo A, Corraliza AM, Veny M, et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease[J/OL]. Nat Commun, 2023, 14(1): 4506[2023-07-26]. https://pubmed.ncbi.nlm.nih.gov/37495570/. DOI: 10.1038/s41467-023-40156-6.
|
13. |
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer[J/OL]. Front Immunol, 2022, 13: 1026954[2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/36325334/. DOI: 10.3389/fimmu.2022.1026954.
|
14. |
He X, Li Z, Li S, et al. Huoxue Tongluo tablet enhances atherosclerosis efferocytosis by promoting the differentiation of Trem2+ macrophages via PPARγ signaling pathway[J/OL]. Phytomedicine, 2025, 140: 156579[2025-05-01]. https://pubmed.ncbi.nlm.nih.gov/40068297/. DOI: 10.1016/j.phymed.2025.156579.
|
15. |
King EM, Zhao Y, Moore CM, et al. Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung[J/OL]. JCI Insight, 2024, 9(24): e182700[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39509324/. DOI: 10.1172/jci.insight.182700.
|
16. |
Zhong X, Zhang F, Xiao H, et al. Single-cell transcriptome analysis of macrophage subpopulations contributing to chemotherapy resistance in ovarian cancer[J/OL]. Immunobiology, 2024, 229(5): 152811[2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/38941863/. DOI: 10.1016/j.imbio.2024.152811.
|
17. |
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy[J]. Surv Ophthalmol, 2022, 67(6): 1563-1573. DOI: 10.1016/j.survophthal.2022.07.008.
|
18. |
Saadane A, Veenstra AA, Minns MS, et al. CCR2-positive monocytes contribute to the pathogenesis of early diabetic retinopathy in mice[J]. Diabetologia, 2023, 66(3): 590-602. DOI: 10.1007/s00125-022-05860-w.
|
19. |
Gong X, Zhao Q, Zhang H, et al. The effects of mesenchymal stem cells-derived exosomes on metabolic reprogramming in scar formation and wound healing[J]. Int J Nanomedicine, 2024, 19: 9871-9887. DOI: 10.2147/IJN.S480901.
|
20. |
Russo S, Kwiatkowski M, Govorukhina N, et al. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites[J/OL]. Front Immunol, 2021, 12: 746151[2021-11-05]. https://pubmed.ncbi.nlm.nih.gov/34804028/. DOI: 10.3389/fimmu.2021.746151.
|
21. |
Florance I, Ramasubbu S. Current understanding on the role of lipids in macrophages and associated diseases[J/OL]. Int J Mol Sci, 2022, 24(1): 589[2022-12-29]. https://pubmed.ncbi.nlm.nih.gov/36614031/. DOI: 10.3390/ijms24010589.
|
22. |
Li J, Zou P, Xiao R, et al. Indole-3-propionic acid alleviates DSS-induced colitis in mice through macrophage glycolipid metabolism[J/OL]. Int Immunopharmacol, 2025, 152: 114388[2025-04-16]. https://pubmed.ncbi.nlm.nih.gov/40086057/. DOI: 10.1016/j.intimp.2025.114388.
|
23. |
Sun R, Lei C, Xu Z, et al. Neutral ceramidase regulates breast cancer progression by metabolic programming of TREM2-associated macrophages[J/OL]. Nat Commun, 2024, 15(1): 966[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38302493/. DOI: 10.1038/s41467-024-45084-7.
|
24. |
Wang X, Xie Z, Zhang J, et al. Interaction between lipid metabolism and macrophage polarization in atherosclerosis[J/OL]. iScience, 2025, 28(4): 112168[2025-04-18]. https://pubmed.ncbi.nlm.nih.gov/40201117/. DOI: 10.1016/j.isci.2025.112168.
|
25. |
Vassiliou E, Farias-Pereira R. Impact of lipid metabolism on macrophage polarization: Implications for inflammation and tumor immunity[J/OL]. Int J Mol Sci, 2023, 24(15): 12032[2023-07-27]. https://pubmed.ncbi.nlm.nih.gov/37569407/. DOI: 10.3390/ijms241512032.
|
26. |
Liu X, Lu J, Ni X, et al. FASN promotes lipid metabolism and progression in colorectal cancer via the SP1/PLA2G4B axis[J/OL]. Cell Death Discov, 2025, 11(1): 122[2025-03-28]. https://pubmed.ncbi.nlm.nih.gov/40148316/. DOI: 10.1038/s41420-025-02409-9.
|
27. |
Brailey PM, Evans L, López-Rodríguez JC, et al. CD1d-dependent rewiring of lipid metabolism in macrophages regulates innate immune responses[J/OL]. Nat Commun, 2022, 13(1): 6723[2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36344546/. DOI: 10.1038/s41467-022-34532-x.
|
28. |
Zuo S, Wang Y, Bao H, et al. Lipid synthesis, triggered by PPARγ T166 dephosphorylation, sustains reparative function of macrophages during tissue repair[J/OL]. Nat Commun, 2024, 15(1): 7269[2024-08-23]. https://pubmed.ncbi.nlm.nih.gov/39179603/. DOI: 10.1038/s41467-024-51736-5.
|
29. |
Zhou T, Yan K, Zhang Y, et al. Fenofibrate suppresses corneal neovascularization by regulating lipid metabolism through PPARα signaling pathway[J/OL]. Front Pharmacol, 2022, 13: 1000254[2022-12-16]. https://pubmed.ncbi.nlm.nih.gov/36588740/. DOI: 10.3389/fphar.2022.1000254.
|
30. |
Ju C, Liu R, Ma Y, et al. Single-cell analysis combined with transcriptome sequencing identifies autophagy hub genes in macrophages after spinal cord injury[J/OL]. Clin Immunol, 2024, 270: 110412[2024-11-28]. https://pubmed.ncbi.nlm.nih.gov/39612968/. DOI: 10.1016/j.clim.2024.110412.
|
31. |
Faraj TA, Edroos G, Erridge C. Toll-like receptor stimulants in processed meats promote lipid accumulation in macrophages and atherosclerosis in apoe-/- mice[J/OL]. Food Chem Toxicol, 2024, 186: 114539[2024-02-21]. https://pubmed.ncbi.nlm.nih.gov/38387521/. DOI: 10.1016/j.fct.2024.114539.
|
32. |
Chen F, Wang N, Liao J, et al. Esculetin rebalances M1/M2 macrophage polarization to treat sepsis-induced acute lung injury through regulating metabolic reprogramming[J/OL]. J Cell Mol Med, 2024, 28(21): e70178[2024-11-13]. https://pubmed.ncbi.nlm.nih.gov/39535339/. DOI: 10.1111/jcmm.70178.
|
33. |
Duan R, Liu Y, Tang D, et al. Single-cell RNA-seq reveals CVI-mAb-induced Lyve1+ M2-like macrophages reduce atherosclerotic plaque area in apoe-/- mice[J/OL]. Int Immunopharmacol, 2023, 116: 109794[2023-02-01]. https://pubmed.ncbi.nlm.nih.gov/36736225/. DOI: 10.1016/j.intimp.2023.109794.
|
34. |
Patterson MT, Firulyova MM, Xu Y, et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis[J]. Nat Cardiovasc Res, 2023, 2(11): 1015-1031. DOI: 10.1038/s44161-023-00354-3.
|
35. |
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[J/OL]. Sci Transl Med, 2020, 12(555): eaay1371[2020-08-05]. https://pubmed.ncbi.nlm.nih.gov/32759274/. DOI: 10.1126/scitranslmed.aay1371.
|
36. |
Becker K, Weigelt CM, Fuchs H, et al. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes[J/OL]. Sci Rep, 2022, 12(1): 19395[2022-11-12]. https://pubmed.ncbi.nlm.nih.gov/36371417/. DOI: 10.1038/s41598-022-23065-4.
|
37. |
Arivazhagan L, Popp CJ, Ruiz HH, et al. The RAGE/DIAPH1 axis: Mediator of obesity and proposed biomarker of human cardiometabolic disease[J]. Cardiovasc Res, 2022, 119(18): 2813-2824. DOI: 10.1093/cvr/cvac175.
|
38. |
Meng YM, Jiang X, Zhao X, et al. Hexokinase 2-driven glycolysis in pericytes activates their contractility leading to tumor blood vessel abnormalities[J/OL]. Nat Commun, 2021, 12(1): 6011[2021-10-14]. https://pubmed.ncbi.nlm.nih.gov/34650057/. DOI: 10.1038/s41467-021-26259-y.
|
39. |
Liu D, Du J, Xie H, et al. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: A key driver of subretinal fibrosis in neovascular age-related macular degeneration[J/OL]. J Neuroinflammation, 2024, 21(1): 75[2024-03-26]. https://pubmed.ncbi.nlm.nih.gov/38532410/. DOI: 10.1186/s12974-024-03068-w.
|
40. |
Gurler G, Belder N, Beker MC, et al. Reduced folate carrier 1 is present in retinal microvessels and crucial for the inner blood retinal barrier integrity[J/OL]. Fluids Barriers CNS, 2023, 20(1): 47[2023-06-16]. https://pubmed.ncbi.nlm.nih.gov/37328777/. DOI: 10.1186/s12987-023-00442-3.
|
41. |
Xiao J, Wang S, Chen L, et al. 25-hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages[J/OL]. Immunity, 2024, 57(5): 1087-1104. e7[2024-05-14]. https://pubmed.ncbi.nlm.nih.gov/38640930/. DOI: 10.1016/j.immuni.2024.03.021.
|
42. |
Yu Y, Dai K, Gao Z, et al. Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages[J/OL]. Sci Adv, 2021, 7(7): eabd8217[2021-02-10]. https://pubmed.ncbi.nlm.nih.gov/33568481/. DOI: 10.1126/sciadv.abd8217.
|
43. |
Gong Y, Tomita Y, Edin ML, et al. Cytochrome P450 oxidase 2J inhibition suppresses choroidal neovascularization in mice[J/OL]. Metabolism, 2022, 134: 155266[2022-07-19]. https://pubmed.ncbi.nlm.nih.gov/35868524/. DOI: 10.1016/j.metabol.2022.155266.
|
44. |
Yang K, Wang X, Song C, et al. The role of lipid metabolic reprogramming in tumor microenvironment[J]. Theranostics, 2023, 13(6): 1774-1808. DOI: 10.7150/thno.82920.
|
45. |
Becker PH, Thérond P, Gaignard P. Targeting mitochondrial function in macrophages: a novel treatment strategy for atherosclerotic cardiovascular disease?[J/OL]. Pharmacol Ther, 2023, 247: 108441[2023-07-01]. https://pubmed.ncbi.nlm.nih.gov/37201736/. DOI: 10.1016/j.pharmthera.2023.108441.
|
46. |
Lu C, Zhao H, Liu Y, et al. Novel role of the SIRT1 in endocrine and metabolic diseases[J]. Int J Biol Sci, 2023, 19(2): 484-501. DOI: 10.7150/ijbs.78654.
|
47. |
Hammer SS, Vieira CP, McFarland D, et al. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction[J]. Diabetologia, 2021, 64(7): 1674-1689. DOI: 10.1007/s00125-021-05431-5.
|
48. |
Yang K, Velagapudi S, Akhmedov A, et al. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress[J]. Cardiovasc Res, 2023, 119(12): 2190-2201. DOI: 10.1093/cvr/cvad102.
|
49. |
Adorini L, Trauner M. FXR agonists in NASH treatment[J]. J Hepatol, 2023, 79(5): 1317-1331. DOI: 10.1016/j.jhep.2023.07.034.
|
50. |
Gu M, Feng Y, Chen Y, et al. Deoxyschizandrin ameliorates obesity and non‐alcoholic fatty liver disease: Involvement of dual Farnesyl X receptor / G protein‐coupled bile acid receptor 1 activation and leptin sensitization[J]. Phytother Res, 2023, 37(7): 2771-2786. DOI: 10.1002/ptr.7770.
|