1. |
Dammann O, Hartnett ME, Stahl A. Retinopathy of prematurity[J]. Dev Med Child Neurol, 2023, 65(5): 625-631. DOI: 10.1111/dmcn.15468.
|
2. |
Fevereiro-Martins M, Marques-Neves C, Guimarães H, et al. Retinopathy of prematurity: a review of pathophysiology and signaling pathways[J]. Surv Ophthalmol, 2023, 68(2): 175-210. DOI: 10.1016/j.survophthal.2022.11.007.
|
3. |
Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments[J/OL]. Pediatrics, 2022, 150(3): e2021053924[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/35948728/. DOI: 10.1542/peds.2021-053924.
|
4. |
Nebbioso M, Franzone F, Lambiase A, et al. Oxidative stress implication in retinal diseases-a review[J/OL]. Antioxidants (Basel), 2022, 11(9): 1790[2022-09-10]. https://pubmed.ncbi.nlm.nih.gov/36139862/. DOI: 10.3390/antiox11091790.
|
5. |
Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy[J/OL]. Oxid Med Cell Longev, 2017, 2017: 9702820[2017-02-06]. https://pubmed.ncbi.nlm.nih.gov/28265339/. DOI: 10.1155/2017/9702820.
|
6. |
Wang X, Wang T, Lam E, et al. Ocular vascular diseases: from retinal immune privilege to inflammation[J/OL]. Int J Mol Sci, 2023, 24(15): 12090[2023-07-28]. https://pubmed.ncbi.nlm.nih.gov/37569464/. DOI: 10.3390/ijms241512090.
|
7. |
Nishinaka A, Inoue Y, Fuma S, et al. Pathophysiological role of VEGF on retinal edema and nonperfused areas in mouse eyes with retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4701-4713. DOI: 10.1167/iovs.18-23994.
|
8. |
Sharma S, Saxena S, Srivastav K, et al. Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations[J]. Clin Exp Ophthalmol, 2015, 43(5): 429-436. DOI: 10.1111/ceo.12506.
|
9. |
Ruan Y, Jiang S, Musayeva A, et al. Oxidative stress and vascular dysfunction in the retina: therapeutic strategies[J/OL]. Antioxidants (Basel), 2020, 9(8): 761[2020-08-17]. https://pubmed.ncbi.nlm.nih.gov/32824523/. DOI: 10.3390/antiox9080761.
|
10. |
Gericke A, Buonfiglio F. Physiological and pathophysiological relevance of nitric oxide synthases (NOS) in retinal blood vessels[J/OL]. Front Biosci (Landmark Ed), 2024, 29(5): 190[2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/38812321/. DOI: 10.31083/j.fbl2905190.
|
11. |
Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease[J]. Prog Retin Eye Res, 2008, 27(4): 331-371. DOI: 10.1016/j.preteyeres.2008.05.001.
|
12. |
Cung T, Wang H, Hartnett ME. The effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and erythropoietin, and their interactions in angiogenesis: implications in retinopathy of prematurity[J/OL]. Cells, 2022, 11(12): 1951[2022-06-17]. https://pubmed.ncbi.nlm.nih.gov/35741081/. DOI: 10.3390/cells11121951.
|
13. |
Wang H, Zhang SX, Hartnett ME. Signaling pathways triggered by oxidative stress that mediate features of severe retinopathy of prematurity[J]. JAMA Ophthalmol, 2013, 131(1): 80-85. DOI: 10.1001/jamaophthalmol.2013.986.
|
14. |
Kermorvant-Duchemin E, Sennlaub F, Sirinyan M, et al. Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration[J]. Nat Med, 2005, 11(12): 1339-1345. DOI: 10.1038/nm1336.
|
15. |
Gu X, El-Remessy AB, Brooks SE, et al. Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite[J]. Am J Physiol Cell Physiol, 2003, 285(3): 546-554. DOI: 10.1152/ajpcell.00424.2002.
|
16. |
Wilkinson-Berka JL, Deliyanti D, Rana I, et al. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy[J]. Antioxid Redox Signal, 2014, 20(17): 2726-2740. DOI: 10.1089/ars.2013.5357.
|
17. |
Edgar KS, Matesanz N, Gardiner TA, et al. Hyperoxia depletes (6R)-5, 6, 7, 8-tetrahydrobiopterin levels in the neonatal retina: implications for nitric oxide synthase function in retinopathy[J]. Am J Pathol, 2015, 185(6): 1769-1782. DOI: 10.1016/j.ajpath.2015.02.021.
|
18. |
Wang J, Li M, Geng Z, et al. Role of oxidative stress in retinal disease and the early intervention strategies: a review[J/OL]. Oxid Med Cell Longev, 2022, 2022: 7836828[2022-10-14]. https://pubmed.ncbi.nlm.nih.gov/36275903/. DOI: 10.1155/2022/7836828.
|
19. |
Barnett JM, McCollum GW, Penn JS. Role of cytosolic phospholipase A(2) in retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2010, 51(2): 1136-1142. DOI: 10.1167/iovs.09-3691.
|
20. |
Joyal JS, Sun Y, Gantner ML, et al. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1[J]. Nat Med, 2016, 22(4): 439-445. DOI: 10.1038/nm.4059.
|
21. |
Su S, Zou P, Yang G, et al. Propranolol ameliorates retinopathy of prematurity in mice by downregulating HIF-1alpha via the PI3K/Akt/ERK pathway[J]. Pediatr Res, 2023, 93(5): 1250-1257. DOI: 10.1038/s41390-022-02211-8.
|
22. |
Wang Q, Zhu M, Li W, et al. CBX7 promotes choroidal neovascularization by activating the HIF-1alpha/VEGF pathway in choroidal vascular endothelial cells[J/OL]. Exp Eye Res, 2024, 247: 110057[2024-08-22]. https://pubmed.ncbi.nlm.nih.gov/39179168/. DOI: 10.1016/j.exer.2024.110057.
|
23. |
Tsai AS, Chou HD, Ling XC, et al. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF)[J/OL]. Prog Retin Eye Res, 2022, 88: 101018[2021-11-09]. https://pubmed.ncbi.nlm.nih.gov/34763060/. DOI: 10.1016/j.preteyeres.2021.101018.
|
24. |
McPherson C. Eyesight to the blind-pharmacotherapy for retinopathy of prematurity[J]. Neonatal Netw, 2023, 42(2): 88-95. DOI: 10.1891/nn.2022-0054.
|
25. |
Sauer L, Chandler M, Hartnett ME. Extending peripheral retinal vascularization in retinopathy of prematurity through regulation of VEGF signaling[J]. Am J Ophthalmol, 2024, 260: 190-199. DOI: 10.1016/j.ajo.2023.12.008.
|
26. |
Ling XC, Kang EY, Chen KJ, et al. Associations of VEGF polymorphisms with retinopathy of prematurity[J]. Invest Ophthalmol Vis Sci, 2023, 64(7): 11. DOI: 10.1167/iovs.64.7.11.
|
27. |
Graziosi A, Perrotta M, Russo D, et al. Oxidative stress markers and the retinopathy of prematurity[J/OL]. J Clin Med, 2020, 9(9): 2711[2020-08-21]. https://pubmed.ncbi.nlm.nih.gov/32825796/. DOI: 10.3390/jcm9092711.
|
28. |
Tsang JKW, Liu J, Lo ACY. Vascular and neuronal protection in the developing retina: potential therapeutic targets for retinopathy of prematurity[J/OL]. Int J Mol Sci, 2019, 20(17): 4321[2019-09-03]. https://pubmed.ncbi.nlm.nih.gov/31484463/. DOI: 10.3390/ijms20174321.
|
29. |
Romero-Maldonado S, Montoya-Estrada A, Reyes-Muñoz E, et al. Efficacy of water-based vitamin E solution versus placebo in the prevention of retinopathy of prematurity in very low birth weight infants: a randomized clinical trial[J/OL]. Medicine (Baltimore), 2021, 100(31): e26765[2021-08-06]. https://pubmed.ncbi.nlm.nih.gov/34397821/. DOI: 10.1097/md.0000000000026765.
|
30. |
Hellström A, Nilsson AK, Wackernagel D, et al. Effect of enteral lipid supplement on severe retinopathy of prematurity: a randomized clinical trial[J]. JAMA Pediatr, 2021, 175(4): 359-367. DOI: 10.1001/jamapediatrics.2020.5653.
|
31. |
Uno K, Prow TW, Bhutto IA, et al. Role of Nrf2 in retinal vascular development and the vaso-obliterative phase of oxygen-induced retinopathy[J]. Exp Eye Res, 2010, 90(4): 493-500. DOI: 10.1016/j.exer.2009.12.012.
|
32. |
Deliyanti D, Lee JY, Petratos S, et al. A potent Nrf2 activator, dh404, bolsters antioxidant capacity in glial cells and attenuates ischaemic retinopathy[J]. Clin Sci (Lond), 2016, 130(15): 1375-1387. DOI: 10.1042/cs20160068.
|
33. |
Bartoli M, Al-Shabrawey M, Labazi M, et al. HMG-CoA reductase inhibitors (statin) prevents retinal neovascularization in a model of oxygen-induced retinopathy[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4934-4940. DOI: 10.1167/iovs.08-2158.
|
34. |
Chen S, Sun Q, Sun D, et al. C-CBL is required for inhibition of angiogenesis through modulating JAK2/STAT3 activity in ROP development[J/OL]. Biomed Pharmacother, 2020, 132: 110856[2020-10-28]. https://pubmed.ncbi.nlm.nih.gov/33125970/. DOI: 10.1016/j.biopha.2020.110856.
|
35. |
Ren J, Jiang J, Ou W, et al. The effect of STAT3 signal pathway activation on retinopathy of prematurity[J/OL]. Front Pediatr, 2021, 9: 638432[2021-11-10]. https://pubmed.ncbi.nlm.nih.gov/34858895/. DOI: 10.3389/fped.2021.638432.
|
36. |
Chen S, Zhang J, Sun D, et al. SYVN1 promotes STAT3 protein ubiquitination and exerts antiangiogenesis effects in retinopathy of prematurity development[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(11): 8[2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/37540175/. DOI: 10.1167/iovs.64.11.8.
|
37. |
Jiang J, Xia XB, Xu HZ, et al. Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF[J]. J Cell Physiol, 2009, 218(1): 66-74. DOI: 10.1002/jcp.21566.
|
38. |
Usui-Ouchi A, Aguilar E, Murinello S, et al. An allosteric peptide inhibitor of HIF-1alpha regulates hypoxia-induced retinal neovascularization[J]. Proc Natl Acad Sci USA, 2020, 117(45): 28297-28306. DOI: 10.1073/pnas.2017234117.
|
39. |
Huang YH, Kuo CH, Peng IC, et al. Recombinant thrombomodulin domain 1 rescues pathological angiogenesis by inhibition of HIF-1alpha-VEGF pathway[J]. Cell Mol Life Sci, 78(23): 7681-7692. DOI: 10.1007/s00018-021-03950-3.
|
40. |
Zhang L, Buonfiglio F, Fieß A, et al. Retinopathy of prematurity-targeting hypoxic and redox signaling pathways[J/OL]. Antioxidants (Basel), 2024, 13(2): 148[2024-01-25]. https://pubmed.ncbi.nlm.nih.gov/38397746/. DOI: 10.3390/antiox13020148.
|
41. |
May CA. The influence of triamcinolone on endostatin-like proteins in oxygen-induced retinopathy of prematurity[J]. Exp Eye Res, 2012, 100: 86-87. DOI: 10.1016/j.exer.2012.04.017.
|
42. |
Öhnell HM, Andreasson S, Gränse L. Dexamethasone eye drops for the treatment of retinopathy of prematurity[J]. Ophthalmol Retina, 2022, 6(2): 181-182. DOI: 10.1016/j.oret.2021.09.002.
|
43. |
Shekhawat PS, Ali MAM, Kannekanti N, et al. Impact of postnatal steroids on peripheral avascular retina and severity of retinopathy of prematurity[J]. Pediatr Res, 2023, 94(6): 1966-1972. DOI: 10.1038/s41390-023-02673-4.
|
44. |
Petrishka-Lozenska M, Pivodic A, Flisberg A, et al. Association between early postnatal hydrocortisone and retinopathy of prematurity in extremely preterm infants[J]. Neonatology, 2025, 122(3): 329-338. DOI: 10.1159/000543659.
|
45. |
Yagi H, Boeck M, Petrishka-Lozenska M, et al. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity[J]. Angiogenesis, 2024, 27(4): 903-917. DOI: 10.1007/s10456-024-09948-2.
|
46. |
Choręziak-Michalak A, Szpecht D, Chmielarz-Czarnocińska A, et al. Comprehensive analysis of the role of gene variants in matrix metalloproteinases and their tissue inhibitors in retinopathy of prematurity: a study in the polish population[J/OL]. Int J Mol Sci, 2023, 24(20): 15309[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/37894989/. DOI: 10.3390/ijms242015309.
|
47. |
Wu PL, Ling XC, Kang EY, et al. Effects of TIMP-2 polymorphisms on retinopathy of prematurity risk, severity, recurrence, and treatment response[J/OL]. Int J Mol Sci, 2022, 23(22): 14199[2022-11-17]. https://pubmed.ncbi.nlm.nih.gov/36430677/. DOI: 10.3390/ijms232214199.
|
48. |
Formica ML, Paz MC, Vaglienti MV, et al. Doxycycline inhibits MMP-2 retinal activity and modulates the angiogenic process in vitro and in vivo[J]. Front Cell Dev Biol, 2025, 13: 1561250. DOI: 10.3389/fcell.2025.1561250.
|
49. |
Ortiz-Seller A, Martorell P, Roselló P, et al. Comparison of different doses of oral and ocular propranolol for retinopathy of prematurity: a network meta-analysis[J]. Paediatr Drugs, 2024, 26(5): 499-518. DOI: 10.1007/s40272-024-00647-5.
|