1. |
Kour V, Swain J, Singh J, et al. A review on diabetic retinopathy[J/OL]. Curr Diabetes Rev. 2024, 20(6): e201023222418[2024-04-12]. https://pubmed.ncbi.nlm.nih.gov/37867267/. DOI: 10.2174/0115733998253672231011161400.
|
2. |
Korhonen A, Gucciardo E, Lehti K, et al. Proliferative diabetic retinopathy transcriptomes reveal angiogenesis, anti-angiogenic therapy escape mechanisms, fibrosis and lymphatic involvement[J/OL]. Sci Rep, 2021, 11(1): 18810[2021-09-22]. https://pubmed.ncbi.nlm.nih.gov/34552123/. DOI: 10.1038/s41598-021-97970-5.
|
3. |
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial defects drive degenerative retinal diseases[J]. Trends Mol Med, 2020, 26(1): 105-118. DOI: 10.1016/j.molmed.2019.10.008.
|
4. |
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, et al. Mitophagy in the retina: viewing mitochondrial homeostasis through a new lens[J/OL]. Prog Retin Eye Res, 2023, 96: 101205[2023-07-15]. https://pubmed.ncbi.nlm.nih.gov/37454969/. DOI: 10.1016/j.preteyeres.2023.101205.
|
5. |
Hombrebueno JR, Cairns L, Dutton LR, et al. Uncoupled turnover disrupts mitochondrial quality control in diabetic retinopathy[J/OL]. JCI Insight, 2019, 4(23): e129760[2019-12-05]. https://pubmed.ncbi.nlm.nih.gov/31661466/. DOI: 10.1172/jci.insight.129760.
|
6. |
D'Amico AG, Maugeri G, Magrì B, et al. Targeting the PINK1/Parkin pathway: a new perspective in the prevention and therapy of diabetic retinopathy[J/OL]. Exp Eye Res, 2024, 247: 110024[2024-08-06]. https://pubmed.ncbi.nlm.nih.gov/39117133/. DOI: 10.1016/j.exer.2024.110024.
|
7. |
Guo L, Wen X, Hou Y, et al. Dihydroartemisinin inhibits endothelial cell migration via the TGF-β1/ALK5/SMAD2 signaling pathway[J/OL]. Exp Ther Med, 2021, 22(1): 709[2021-05-03]. https://pubmed.ncbi.nlm.nih.gov/34007318/. DOI: 10.3892/etm.2021.10141.
|
8. |
Zhang J, Li R, Liu Q, et al. SB431542-loaded liposomes alleviate liver fibrosis by suppressing TGF-β signaling[J]. Mol Pharm, 2020, 17(11): 4152-4162. DOI: 10.1021/acs.molpharmaceut.0c00633.
|
9. |
Dong L, Zhang Z, Liu X, et al. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy[J]. J Mol Med (Berl), 2021, 99(2): 225-240. DOI: 10.1007/s00109-020-01995-8.
|
10. |
Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells[J/OL]. Am J Physiol Endocrinol Metab, 2020, 318(2): E87-101[2020-02-01]. https://pubmed.ncbi.nlm.nih.gov/31846372/. DOI: 10.1152/ajpendo.00457.2019.
|
11. |
Valente AJ, Maddalena LA, Robb EL, et al. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture[J]. Acta Histochem, 2017, 119(3): 315-326. DOI: 10.1016/j.acthis.2017.03.001.
|
12. |
何珍, 寇振宇, 东莉洁, 等. 组织蛋白酶L抑制剂经线粒体途径抑制氧化应激诱导的视网膜色素上皮细胞凋亡[J]. 中华眼底病杂志, 2024, 40(5): 379-386. DOI: 10.3760/cma.j.cn511434-20231207-00474.He Z, Kou ZY, Dong LJ, et al. Cathepsin L inhibitor suppresses oxidative stress-induced apoptosis of retinal pigment epithelial cells by targeting mitochondria[J]. Chin J Ocul Fundus Dis, 2024, 40(5): 379-386. DOI: 10.3760/cma.j.cn511434-20231207-00474.
|
13. |
Callan A, Jha S, Valdez L, et al. TGF-β signaling pathways in the development of diabetic retinopathy[J/OL]. Int J Mol Sci, 2024, 25(5): 3052[2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/38474297/. DOI: 10.3390/ijms25053052.
|
14. |
Wang M, Sheng KJ, Fang JC, et al. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products[J/OL]. Eur J Med Chem, 2022, 244: 114829[2022-12-15]. https://pubmed.ncbi.nlm.nih.gov/36209631/. DOI: 10.1016/j.ejmech.2022.114829.
|
15. |
Rodriguez R, Lowe K, Keniry M, et al. Involvement of TGFβ signaling pathway in oxidative stress and diabetic retinopathy[J]. Arch Clin Exp Ophthalmol, 2021, 3(2): 23-28.
|
16. |
Wang H, Ramshekar A, Kunz E, et al. 7-ketocholesterol induces endothelial-mesenchymal transition and promotes fibrosis: implications in neovascular age-related macular degeneration and treatment[J]. Angiogenesis, 2021, 24(3): 583-595. DOI: 10.1007/s10456-021-09770-0.
|
17. |
曹靖靖, 韩菲菲, 寇振宇, 等. SB431542对高糖诱导的RPE细胞自噬及上皮-间充质转化影响的实验研究[J]. 中华眼科杂志, 2025, 61(3): 202-210. DOI: 10.3760/cma.j.cn112142-20240311-00109.Cao JJ, Han FF, Kou ZY, et al. Effect of SB431542 on autophagy and epithelial mesenchymal transition in retinal pigment epithelial cells induced by high glucose[J]. Chin J Ocul Fundus Dis, 2025, 61(3): 202-210. DOI: 10.3760/cma.j.cn112142-20240311-00109.
|
18. |
Nijim W, Moustafa M, Humble J, et al. Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics[J/OL]. Front Ophthalmol (Lausanne), 2023, 3: 1230581[2023-09-07]. https://pubmed.ncbi.nlm.nih.gov/38983088/. DOI: 10.3389/fopht.2023.1230581.
|
19. |
Rossmann MP, Dubois SM, Agarwal S, et al. Mitochondrial function in development and disease[J/OL]. Dis Model Mech, 2021, 14(6): dmm048912[2021-06-01]. https://pubmed.ncbi.nlm.nih.gov/34114603/. DOI: 10.1242/dmm.048912.
|
20. |
Wu Y, Zou H. Research progress on mitochondrial dysfunction in diabetic retinopathy[J/OL]. Antioxidants (Basel), 2022, 11(11): 2250[2022-11-15]. https://pubmed.ncbi.nlm.nih.gov/36421435/. DOI: 10.3390/antiox11112250.
|
21. |
Kowluru RA. Mitochondrial stability in diabetic retinopathy: lessons learned from epigenetics[J]. Diabetes, 2019, 68(2): 241-247. DOI: 10.2337/dbi18-0016.
|
22. |
Tanaka K. The PINK1-Parkin axis: an overview[J]. Neurosci Res, 2020, 159: 9-15. DOI: 10.1016/j.neures.2020.01.006.
|
23. |
Lenka DR, Dahe SV, Antico O, et al. Additional feedforward mechanism of Parkin activation via binding of phospho-UBL and RING0 in trans[J/OL]. Elife, 2024, 13: RP96699[2024-09-02]. https://pubmed.ncbi.nlm.nih.gov/39221915/. DOI: 10.7554/eLife.96699.
|
24. |
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control[J]. Nat Cell Biol, 2024, 26(10): 1639-1651. DOI: 10.1038/s41556-024-01513-9.
|
25. |
Sauvé V, Sung G, MacDougall EJ, et al. Structural basis for feedforward control in the PINK1/Parkin pathway[J/OL]. EMBO J, 2022, 41(12): e109460[2022-06-14]. https://pubmed.ncbi.nlm.nih.gov/35491809/. DOI: 10.15252/embj.2021109460.
|
26. |
Fakih R, Sauvé V, Gehring K. Feedforward activation of PRKN/parkin[J]. Autophagy, 2023, 19(2): 729-730. DOI: 10.1080/15548627.2022.2100615.
|
27. |
Qiu Y, Wang J, Li H, et al. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease[J]. Autophagy, 2022, 18(1): 73-85. DOI: 10.1080/15548627.2021.1908722.
|
28. |
Zhang MY, Zhu L, Bao X, et al. Inhibition of Drp1 ameliorates diabetic retinopathy by regulating mitochondrial homeostasis[J/OL]. Exp Eye Res, 2022, 220: 109095[2022-04-28]. https://pubmed.ncbi.nlm.nih.gov/35490835/. DOI: 10.1016/j.exer.2022.109095.
|
29. |
Zhang Y, Xi X, Mei Y, et al. High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway[J]. Biomed Pharmacother, 2019, 111: 1315-1325. DOI: 10.1016/j.biopha.2019.01.034.
|
30. |
Huang L, Yao T, Chen J, et al. Effect of Sirt3 on retinal pigment epithelial cells in high glucose through Foxo3a/ PINK1-Parkin pathway mediated mitophagy[J/OL]. Exp Eye Res, 2022, 218: 109015[2022-02-28]. https://pubmed.ncbi.nlm.nih.gov/35240195/. DOI: 10.1016/j.exer.2022.109015.
|
31. |
Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J/OL]. Cell Death Dis, 2022, 13(5): 444[2022-05-09]. https://pubmed.ncbi.nlm.nih.gov/35534453/. DOI: 10.1038/s41419-022-04906-6.
|