- 1. The First Clinical Medical College of Jinan University, Guangzhou 510630, China;
- 2. Shenzhen Eye Hospital/Shenzhen Eye Research Center, Southern Medical University, Shenzhen 518040, China;
In recent years, with the rapid development of gene editing technologies, research on the application of the clustered regularly interspaced short palindromic repeats (CRISPR) system in inherited retinal diseases (IRD) has become increasingly in-depth. Many IRD, such as retinitis pigmentosa, Leber congenital amaurosis, and Stargardt disease, are characterized by clearly defined pathogenic gene mutations, making them ideal targets for gene therapy. Owing to its high efficiency, strong specificity, and programmability, CRISPR technology offers a novel approach for the precise treatment of these conditions. This review summarizes recent progress in the application of CRISPR in IRD therapy, with a focus on target gene selection, optimization of editing tools and delivery systems, in vitro and in vivo validation, and early clinical investigations. In addition, current challenges, including off target effects, immune responses, and limitations in editing and delivery efficiency, are discussed. With continuous improvements in editing platforms and delivery strategies, CRISPR holds great promise for personalized treatment of IRD and may further accelerate the clinical application of precision medicine in ophthalmology.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Biber J, Gandor C, Becirovic E, et al. Retina-directed gene therapy: Achievements and remaining challenges[J/OL]. Pharmacol Ther, 2025, 271: 108862[2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40268248/. DOI: 10.1016/j.pharmthera.2025.108862. |
2. | Willett K, Bennett J. Immunology of AAV-mediated gene transfer in the eye[J/OL]. Front Immunol, 2013, 4: 261[2013-08-30]. https://pubmed.ncbi.nlm.nih.gov/24009613/. DOI: 10.3389/fimmu.2013.00261. |
3. | Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment[J/OL]. Biomark Res, 2024, 12(1): 156[2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39696697/. DOI: 10.1186/s40364-024-00701-x. |
4. | Xu W, Zhang S, Qin H, et al. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine[J/OL]. J Transl Med, 2024, 22(1): 1133[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39707395/. DOI: 10.1186/s12967-024-05957-3. |
5. | Cai R, Lv R, Shi X, et al. CRISPR/dCas9 tools: epigenetic mechanism and application in gene transcriptional regulation[J/OL]. Int J Mol Sci, 2023, 24(19): 14865[2023-10-03]. https://pubmed.ncbi.nlm.nih.gov/37834313/. DOI: 10.3390/ijms241914865. |
6. | Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther, 2016, 24(3): 556-563. DOI: 10.1038/mt.2015.220. |
7. | Patrizi C, Llado M, Benati D, et al. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model[J]. Am J Hum Genet, 2021, 108(2): 295-308. DOI: 10.1016/j.ajhg.2021.01.006. |
8. | Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9. PHP. B-based delivery[J]. Hum Mol Genet, 2018, 27(5): 761-779. DOI: 10.1093/hmg/ddx438. |
9. | Liu X, Qiao J, Jia R, et al. Allele-specific gene-editing approach for vision loss restoration in RHO-associated retinitis pigmentosa[J/OL]. Elife, 2023, 12: e84065[2023-06-05]. https://pubmed.ncbi.nlm.nih.gov/37272616/. DOI: 10.7554/eLife.84065. |
10. | Sun X, Liang C, Chen Y, et al. Knockout and replacement gene surgery to treat rhodopsin-mediated autosomal dominant retinitis pigmentosa[J]. Hum Gene Ther, 2024, 35(5-6): 151-162. DOI: 10.1089/hum.2023.201. |
11. | Du W, Li J, Tang X, et al. CRISPR/SaCas9-based gene editing rescues photoreceptor degeneration throughout a rhodopsin-associated autosomal dominant retinitis pigmentosa mouse model[J]. Exp Biol Med (Maywood), 2023, 248(20): 1818-1828. DOI: 10.1177/15353702231199069. |
12. | Burnight ER, Wiley LA, Mullin NK, et al. CRISPRi-mediated treatment of dominant rhodopsin-associated retinitis pigmentosa[J]. CRISPRJ, 2023, 6(6): 502-513. DOI: 10.1089/crispr.2023.0039. |
13. | Yan Z, Yao Y, Li L, et al. Treatment of autosomal dominant retinitis pigmentosa caused by RHO-P23H mutation with high-fidelity Cas13X in mice[J]. Mol Ther Nucleic Acids, 2023, 33: 750-761. DOI: 10.1016/j.omtn.2023.08.002. |
14. | Diakatou M, Dubois G, Erkilic N, et al. Allele-specific knockout by CRISPR/Cas to treat autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3[J/OL]. Int J Mol Sci, 2021, 22(5): 2607[2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/33807610/. DOI: 10.3390/ijms22052607. |
15. | Cai Y, Cheng T, Yao Y, et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway[J/OL]. Sci Adv, 2019, 5(4): eaav3335[2019-04-17]. https://pubmed.ncbi.nlm.nih.gov/31001583/. DOI: 10.1126/sciadv.aav3335. |
16. | Tsai YT, Da Costa BL, Nolan ND, et al. Prime editing for the installation and correction of mutations causing inherited retinal disease: a brief methodology[J]. Methods Mol Biol, 2023, 2560: 313-331. DOI: 10.1007/978-1-0716-2651-1_29. |
17. | Fu Y, He X, Ma L, et al. In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa[J/OL]. Nat Commun, 2025, 16(1): 2394[2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/40064881/. DOI: 10.1038/s41467-025-57628-6. |
18. | Wang Q, Xu X, Chen S, et al. dCasMINI-mediated therapy rescues photoreceptors degeneration in a mouse model of retinitis pigmentosa[J/OL]. Sci Adv, 2024, 10(51): eadn7540[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39693439/. DOI: 10.1126/sciadv.adn7540. |
19. | Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature, 2016, 540(7631): 144-149. DOI: 10.1038/nature20565. |
20. | Puertas-Neyra K, Coco-Martin RM, Hernandez-Rodriguez LA, et al. Clinical exome analysis and targeted gene repair of the c. 1354dupT variant in iPSC lines from patients with PROM1-related retinopathies exhibiting diverse phenotypes[J/OL]. Stem Cell Res Ther, 2024, 15(1): 192[2024-07-02]. https://pubmed.ncbi.nlm.nih.gov/38956727/. DOI: 10.1186/s13287-024-03804-2. |
21. | Du SW, Newby GA, Salom D, et al. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice[J/OL]. Proc Natl Acad Sci USA, 2024, 121(48): e2416827121[2024-11-18]. https://pubmed.ncbi.nlm.nih.gov/39556729/. DOI: 10.1073/pnas.2416827121. |
22. | Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003. |
23. | Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing[J]. Gene Ther, 2022, 29(1-2): 81-93. DOI: 10.1038/s41434-021-00258-6. |
24. | Hu S, Du J, Chen N, et al. In vivo CRISPR/Cas9-mediated genome editing mitigates photoreceptor degeneration in a mouse model of X-linked retinitis pigmentosa[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(4): 31[2020-04-09]. https://pubmed.ncbi.nlm.nih.gov/32330228/. DOI: 10.1167/iovs.61.4.31. |
25. | Cui T, Cai B, Tian Y, et al. Therapeutic in vivo gene editing achieved by a hypercompact CRISPR-Cas12f1 system delivered with all-in-one adeno-associated virus[J/OL]. Adv Sci (Weinh), 2024, 11(19): e2308095[2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/38408137/. DOI: 10.1002/advs.202308095. |
26. | Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice[J/OL]. Nat Commun, 2017, 8: 14716[2017-03-14]. https://pubmed.ncbi.nlm.nih.gov/28291770/. DOI: 10.1038/ncomms14716. |
27. | Liu Z, Chen S, Lo CH, et al. All-in-one AAV-mediated Nrl gene inactivation rescues retinal degeneration in Pde6a mice[J/OL]. JCI Insight, 2024, 9(24): e178159[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39499900/. DOI: 10.1172/jci.insight.178159. |
28. | Nolan ND, Cui X, Robbings BM, et al. CRISPR editing of anti-anemia drug target rescues independent preclinical models of retinitis pigmentosa[J/OL]. Cell Rep Med, 2024, 5(4): 101459[2024-04-16]. https://pubmed.ncbi.nlm.nih.gov/38518771/. DOI: 10.1016/j.xcrm.2024.101459. |
29. | Böhm S, Splith V, Riedmayr L M, et al. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation[J/OL]. Sci Adv, 2020, 6(34): eaba5614[2020-08-19]. https://pubmed.ncbi.nlm.nih.gov/32875106/. DOI: 10.1126/sciadv.aba5614. |
30. | Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy[J/OL]. Nat Commun, 2023, 14(1): 6578[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/37852949/. DOI: 10.1038/s41467-023-42386-0. |
31. | Chirco KR, Chew S, Moore AT, et al. Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model[J]. Stem Cell Reports, 2021, 16(11): 2690-2702. DOI: 10.1016/j.stemcr.2021.09.007. |
32. | Leung A, Sacristan-Reviriego A, Perdigão PRL, et al. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis[J]. Stem Cell Reports, 2022, 17(10): 2187-2202. DOI: 10.1016/j.stemcr.2022.08.005. |
33. | Afanasyeva TAV, Athanasiou D, Perdigao PRL, et al. CRISPR-Cas9correction of a nonsense mutation in LCA5 rescues lebercilin expression and localization in human retinal organoids[J]. Mol Ther Methods Clin Dev, 2023, 29: 522-531. DOI: 10.1016/j.omtm.2023.05.012. |
34. | Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis[J/OL]. Sci Adv, 2019, 5(10): eaax1210[2019-10-30]. https://pubmed.ncbi.nlm.nih.gov/31692906/. DOI: 10.1126/sciadv.aax1210. |
35. | Jo DH, Jang HK, Cho CS, et al. Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing[J]. Mol Ther Nucleic Acids, 2023, 31: 16-27. DOI: 10.1016/j.omtn.2022.11.021. |
36. | Kabra M, Shahi PK, Wang Y, et al. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy[J/OL]. J Clin Invest, 2023, 133(19): e171356[2023-10-02]. https://pubmed.ncbi.nlm.nih.gov/37561581/. DOI: 10.1172/JCI171356. |
37. | Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]. Nat Med, 2019, 25(2): 229-233. DOI: 10.1038/s41591-018-0327-9. |
38. | Pierce EA, Aleman TS, Jayasundera KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390(21): 1972-1984. DOI: 10.1056/NEJMoa2309915. |
39. | Chey YCJ, Gierus L, Lushington C, et al. Optimal SpCas9- and SaCas9-mediated gene editing by enhancing gRNA transcript levels through scaffold poly-T tract reduction[J/OL]. BMC Genomics, 2025, 26(1): 138[2025-02-12]. https://pubmed.ncbi.nlm.nih.gov/39939860/. DOI: 10.1186/s12864-025-11317-2. |
40. | Grotz S, Schäfer J, Wunderlich KA, et al. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes[J/OL]. EMBO Mol Med, 2022, 14(4): e14817[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35254721/. DOI: 10.15252/emmm.202114817. |
41. | Liu X, Lillywhite J, Zhu W, et al. Generation and genetic correction of USH2A c. 2299delG mutation in patient-derived induced pluripotent stem cells[J/OL]. Genes (Basel), 2021, 12(6): 805[2021-05-25]. https://pubmed.ncbi.nlm.nih.gov/34070435/. DOI: 10.3390/genes12060805. |
42. | Sanjurjo-Soriano C, Erkilic N, Baux D, et al. Genome editing in patient iPSC corrects the most prevalent USH2A mutations and reveals intriguing mutant mRNA expression Profiles[J]. Mol Ther Methods Clin Dev, 2020, 17: 156-173. DOI: 10.1016/j.omtm.2019.11.016. |
43. | Pendse ND, Lamas V, Pawlyk BS, et al. In vivo assessment of potential therapeutic approaches for USH2A-associated diseases[J]. Adv Exp Med Biol, 2019, 1185: 91-96. DOI: 10.1007/978-3-030-27378-1_15. |
44. | De Angeli P, Spaag S, Shliaga S, et al. Single-guide RNA Cas9 and enhanced-deletion Cas9 rescue a recurrent USH2A-related splicing defect[J/OL]. Mol Ther Nucleic Acids, 2025, 36(2): 102523[2025-03-21]. https://pubmed.ncbi.nlm.nih.gov/40235854/. DOI: 10.1016/j.omtn.2025.102523. |
45. | Fry LE, Major L, Salman A, et al. Comparison of CRISPR-Cas13b RNA base editing approaches for USH2A-associated inherited retinal degeneration[J/OL]. Commun Biol, 2025, 8(1): 200[2025-02-08]. https://pubmed.ncbi.nlm.nih.gov/39922978/. DOI: 10.1038/s42003-025-07557-3. |
46. | Panagiotopoulos AL, Karguth N, Pavlou M, et al. Antisense oligonucleotide- and CRISPR-Cas9-mediated rescue of mRNA splicing for a deep intronic CLRN1 mutation[J]. Mol Ther Nucleic Acids, 2020, 21: 1050-1061. DOI: 10.1016/j.omtn.2020.07.036. |
47. | Yang F, Ma H, Garg R, et al. Inhibition of ryanodine receptor 1 reduces endoplasmic reticulum (ER) stress and promotes ER protein degradation in cyclic nucleotide-gated channel deficiency[J]. Adv Exp Med Biol, 2023, 1415: 353-358. DOI: 10.1007/978-3-031-27681-1_51. |
48. | Siles L, Gaudó P, Pomares E. High-efficiency CRISPR/Cas9-mediated correction of a homozygous mutation in achromatopsia-patient-derived iPSC[J/OL]. Int J Mol Sci, 2023, 24(4): 3655[2023-02-11]. https://pubmed.ncbi.nlm.nih.gov/36835061/. DOI: 10.3390/ijms24043655. |
49. | Muller A, Sullivan J, Schwarzer W, et al. High-efficiency base editing in the retina in primates and human tissues[J]. Nat Med, 2025, 31(2): 490-501. DOI: 10.1038/s41591-024-03422-8. |
50. | Xiao YL, Wu Y, Tang W. An adenine base editor variant expands context compatibility[J]. Nat Biotechnol, 2024, 42(9): 1442-1453. DOI: 10.1038/s41587-023-01994-3. |
51. | Zhao T, Li Q, Zhou C, et al. Small-molecule compounds boost genome-editing efficiency of cytosine base editor[J]. Nucleic Acids Res, 2021, 49(15): 8974-8986. DOI: 10.1093/nar/gkab645. |
52. | Wimmer T, Sawinski H, Urban AM, et al. Rapid and reliable quantification of prime editing targeting within the porcine ABCA4 gene using a BRET-based sensor[J]. Nucleic Acid Ther, 2023, 33(3): 226-232. DOI: 10.1089/nat.2022.0037. |
53. | Vázquez-Domínguez I, Öktem M, Winkelaar FA, et al. Lipopeptide-mediated Cas9 RNP delivery: a promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4[J/OL]. Mol Ther Nucleic Acids, 2024, 35(4): 102345[2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/39494150/. DOI: 10.1016/j.omtn.2024.102345. |
54. | De Angeli P, Flores-Tufiño A, Stingl K, et al. Splicing defects and CRISPR-Cas9 correction in isogenic homozygous photoreceptor precursors harboring clustered deep-intronic ABCA4 variants[J/OL]. Mol Ther Nucleic Acids, 2024, 35(1): 102113[2023-12-27]. https://pubmed.ncbi.nlm.nih.gov/38274366/. DOI: 10.1016/j.omtn.2023.102113. |
55. | Sarkar H, Moosajee M. Choroideremia: molecular mechanisms and therapies[J]. Trends Mol Med, 2022, 28(5): 378-387. DOI: 10.1016/j.molmed.2022.02.011. |
56. | Fonseca AF, Coelho R, Da-Silva ML, et al. Modeling choroideremia disease with isogenic induced pluripotent stem cells[J]. Stem Cells Dev, 2024, 33(19-20): 528-539. DOI: 10.1089/scd.2024.0105. |
57. | Iwagawa T, Masumoto H, Tabuchi H, et al. Evaluation of CRISPR/Cas9 exon-skipping vector for choroideremia using human induced pluripotent stem cell-derived RPE[J/OL]. J Gene Med, 2023, 25(2): e3464[2022-12-04]. https://pubmed.ncbi.nlm.nih.gov/36413603/. DOI: 10.1002/jgm.3464. |
58. | Mao S, Sun X, Duan C, et al. Generation of a gene-corrected isogenic iPSC cell line from an X-linked retinoschisis patient with a hemizygous mutation c. 304C>T (p. R102W) in RS1 gene[J/OL]. Stem Cell Res, 2023, 73: 103263[2023-11-23]. https://pubmed.ncbi.nlm.nih.gov/38011758/. DOI: 10.1016/j.scr.2023.103263. |
59. | Yang TC, Chang CY, Yarmishyn AA, et al. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSC and mouse retina[J]. Acta Biomater, 2020, 101: 484-494. DOI: 10.1016/j.actbio.2019.10.037. |
60. | Ruan GX, Barry E, Yu D, et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10[J]. Mol Ther, 2017, 25(2): 331-341. DOI: 10.1016/j.ymthe.2016.12.006. |
61. | Pan X, Qu K, Yuan H, et al. Massively targeted evaluation of therapeutic CRISPR off-targets in cells[J/OL]. Nat Commun, 2022, 13(1): 4049[2022-07-13]. https://pubmed.ncbi.nlm.nih.gov/35831290/. DOI: 10.1038/s41467-022-31543-6. |
- 1. Biber J, Gandor C, Becirovic E, et al. Retina-directed gene therapy: Achievements and remaining challenges[J/OL]. Pharmacol Ther, 2025, 271: 108862[2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40268248/. DOI: 10.1016/j.pharmthera.2025.108862.
- 2. Willett K, Bennett J. Immunology of AAV-mediated gene transfer in the eye[J/OL]. Front Immunol, 2013, 4: 261[2013-08-30]. https://pubmed.ncbi.nlm.nih.gov/24009613/. DOI: 10.3389/fimmu.2013.00261.
- 3. Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment[J/OL]. Biomark Res, 2024, 12(1): 156[2024-12-18]. https://pubmed.ncbi.nlm.nih.gov/39696697/. DOI: 10.1186/s40364-024-00701-x.
- 4. Xu W, Zhang S, Qin H, et al. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine[J/OL]. J Transl Med, 2024, 22(1): 1133[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39707395/. DOI: 10.1186/s12967-024-05957-3.
- 5. Cai R, Lv R, Shi X, et al. CRISPR/dCas9 tools: epigenetic mechanism and application in gene transcriptional regulation[J/OL]. Int J Mol Sci, 2023, 24(19): 14865[2023-10-03]. https://pubmed.ncbi.nlm.nih.gov/37834313/. DOI: 10.3390/ijms241914865.
- 6. Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther, 2016, 24(3): 556-563. DOI: 10.1038/mt.2015.220.
- 7. Patrizi C, Llado M, Benati D, et al. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model[J]. Am J Hum Genet, 2021, 108(2): 295-308. DOI: 10.1016/j.ajhg.2021.01.006.
- 8. Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9. PHP. B-based delivery[J]. Hum Mol Genet, 2018, 27(5): 761-779. DOI: 10.1093/hmg/ddx438.
- 9. Liu X, Qiao J, Jia R, et al. Allele-specific gene-editing approach for vision loss restoration in RHO-associated retinitis pigmentosa[J/OL]. Elife, 2023, 12: e84065[2023-06-05]. https://pubmed.ncbi.nlm.nih.gov/37272616/. DOI: 10.7554/eLife.84065.
- 10. Sun X, Liang C, Chen Y, et al. Knockout and replacement gene surgery to treat rhodopsin-mediated autosomal dominant retinitis pigmentosa[J]. Hum Gene Ther, 2024, 35(5-6): 151-162. DOI: 10.1089/hum.2023.201.
- 11. Du W, Li J, Tang X, et al. CRISPR/SaCas9-based gene editing rescues photoreceptor degeneration throughout a rhodopsin-associated autosomal dominant retinitis pigmentosa mouse model[J]. Exp Biol Med (Maywood), 2023, 248(20): 1818-1828. DOI: 10.1177/15353702231199069.
- 12. Burnight ER, Wiley LA, Mullin NK, et al. CRISPRi-mediated treatment of dominant rhodopsin-associated retinitis pigmentosa[J]. CRISPRJ, 2023, 6(6): 502-513. DOI: 10.1089/crispr.2023.0039.
- 13. Yan Z, Yao Y, Li L, et al. Treatment of autosomal dominant retinitis pigmentosa caused by RHO-P23H mutation with high-fidelity Cas13X in mice[J]. Mol Ther Nucleic Acids, 2023, 33: 750-761. DOI: 10.1016/j.omtn.2023.08.002.
- 14. Diakatou M, Dubois G, Erkilic N, et al. Allele-specific knockout by CRISPR/Cas to treat autosomal dominant retinitis pigmentosa caused by the G56R mutation in NR2E3[J/OL]. Int J Mol Sci, 2021, 22(5): 2607[2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/33807610/. DOI: 10.3390/ijms22052607.
- 15. Cai Y, Cheng T, Yao Y, et al. In vivo genome editing rescues photoreceptor degeneration via a Cas9/RecA-mediated homology-directed repair pathway[J/OL]. Sci Adv, 2019, 5(4): eaav3335[2019-04-17]. https://pubmed.ncbi.nlm.nih.gov/31001583/. DOI: 10.1126/sciadv.aav3335.
- 16. Tsai YT, Da Costa BL, Nolan ND, et al. Prime editing for the installation and correction of mutations causing inherited retinal disease: a brief methodology[J]. Methods Mol Biol, 2023, 2560: 313-331. DOI: 10.1007/978-1-0716-2651-1_29.
- 17. Fu Y, He X, Ma L, et al. In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa[J/OL]. Nat Commun, 2025, 16(1): 2394[2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/40064881/. DOI: 10.1038/s41467-025-57628-6.
- 18. Wang Q, Xu X, Chen S, et al. dCasMINI-mediated therapy rescues photoreceptors degeneration in a mouse model of retinitis pigmentosa[J/OL]. Sci Adv, 2024, 10(51): eadn7540[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39693439/. DOI: 10.1126/sciadv.adn7540.
- 19. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature, 2016, 540(7631): 144-149. DOI: 10.1038/nature20565.
- 20. Puertas-Neyra K, Coco-Martin RM, Hernandez-Rodriguez LA, et al. Clinical exome analysis and targeted gene repair of the c. 1354dupT variant in iPSC lines from patients with PROM1-related retinopathies exhibiting diverse phenotypes[J/OL]. Stem Cell Res Ther, 2024, 15(1): 192[2024-07-02]. https://pubmed.ncbi.nlm.nih.gov/38956727/. DOI: 10.1186/s13287-024-03804-2.
- 21. Du SW, Newby GA, Salom D, et al. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice[J/OL]. Proc Natl Acad Sci USA, 2024, 121(48): e2416827121[2024-11-18]. https://pubmed.ncbi.nlm.nih.gov/39556729/. DOI: 10.1073/pnas.2416827121.
- 22. Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003.
- 23. Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing[J]. Gene Ther, 2022, 29(1-2): 81-93. DOI: 10.1038/s41434-021-00258-6.
- 24. Hu S, Du J, Chen N, et al. In vivo CRISPR/Cas9-mediated genome editing mitigates photoreceptor degeneration in a mouse model of X-linked retinitis pigmentosa[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(4): 31[2020-04-09]. https://pubmed.ncbi.nlm.nih.gov/32330228/. DOI: 10.1167/iovs.61.4.31.
- 25. Cui T, Cai B, Tian Y, et al. Therapeutic in vivo gene editing achieved by a hypercompact CRISPR-Cas12f1 system delivered with all-in-one adeno-associated virus[J/OL]. Adv Sci (Weinh), 2024, 11(19): e2308095[2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/38408137/. DOI: 10.1002/advs.202308095.
- 26. Yu W, Mookherjee S, Chaitankar V, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice[J/OL]. Nat Commun, 2017, 8: 14716[2017-03-14]. https://pubmed.ncbi.nlm.nih.gov/28291770/. DOI: 10.1038/ncomms14716.
- 27. Liu Z, Chen S, Lo CH, et al. All-in-one AAV-mediated Nrl gene inactivation rescues retinal degeneration in Pde6a mice[J/OL]. JCI Insight, 2024, 9(24): e178159[2024-12-20]. https://pubmed.ncbi.nlm.nih.gov/39499900/. DOI: 10.1172/jci.insight.178159.
- 28. Nolan ND, Cui X, Robbings BM, et al. CRISPR editing of anti-anemia drug target rescues independent preclinical models of retinitis pigmentosa[J/OL]. Cell Rep Med, 2024, 5(4): 101459[2024-04-16]. https://pubmed.ncbi.nlm.nih.gov/38518771/. DOI: 10.1016/j.xcrm.2024.101459.
- 29. Böhm S, Splith V, Riedmayr L M, et al. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation[J/OL]. Sci Adv, 2020, 6(34): eaba5614[2020-08-19]. https://pubmed.ncbi.nlm.nih.gov/32875106/. DOI: 10.1126/sciadv.aba5614.
- 30. Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy[J/OL]. Nat Commun, 2023, 14(1): 6578[2023-10-18]. https://pubmed.ncbi.nlm.nih.gov/37852949/. DOI: 10.1038/s41467-023-42386-0.
- 31. Chirco KR, Chew S, Moore AT, et al. Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model[J]. Stem Cell Reports, 2021, 16(11): 2690-2702. DOI: 10.1016/j.stemcr.2021.09.007.
- 32. Leung A, Sacristan-Reviriego A, Perdigão PRL, et al. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis[J]. Stem Cell Reports, 2022, 17(10): 2187-2202. DOI: 10.1016/j.stemcr.2022.08.005.
- 33. Afanasyeva TAV, Athanasiou D, Perdigao PRL, et al. CRISPR-Cas9correction of a nonsense mutation in LCA5 rescues lebercilin expression and localization in human retinal organoids[J]. Mol Ther Methods Clin Dev, 2023, 29: 522-531. DOI: 10.1016/j.omtm.2023.05.012.
- 34. Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9-mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis[J/OL]. Sci Adv, 2019, 5(10): eaax1210[2019-10-30]. https://pubmed.ncbi.nlm.nih.gov/31692906/. DOI: 10.1126/sciadv.aax1210.
- 35. Jo DH, Jang HK, Cho CS, et al. Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing[J]. Mol Ther Nucleic Acids, 2023, 31: 16-27. DOI: 10.1016/j.omtn.2022.11.021.
- 36. Kabra M, Shahi PK, Wang Y, et al. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy[J/OL]. J Clin Invest, 2023, 133(19): e171356[2023-10-02]. https://pubmed.ncbi.nlm.nih.gov/37561581/. DOI: 10.1172/JCI171356.
- 37. Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]. Nat Med, 2019, 25(2): 229-233. DOI: 10.1038/s41591-018-0327-9.
- 38. Pierce EA, Aleman TS, Jayasundera KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390(21): 1972-1984. DOI: 10.1056/NEJMoa2309915.
- 39. Chey YCJ, Gierus L, Lushington C, et al. Optimal SpCas9- and SaCas9-mediated gene editing by enhancing gRNA transcript levels through scaffold poly-T tract reduction[J/OL]. BMC Genomics, 2025, 26(1): 138[2025-02-12]. https://pubmed.ncbi.nlm.nih.gov/39939860/. DOI: 10.1186/s12864-025-11317-2.
- 40. Grotz S, Schäfer J, Wunderlich KA, et al. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes[J/OL]. EMBO Mol Med, 2022, 14(4): e14817[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35254721/. DOI: 10.15252/emmm.202114817.
- 41. Liu X, Lillywhite J, Zhu W, et al. Generation and genetic correction of USH2A c. 2299delG mutation in patient-derived induced pluripotent stem cells[J/OL]. Genes (Basel), 2021, 12(6): 805[2021-05-25]. https://pubmed.ncbi.nlm.nih.gov/34070435/. DOI: 10.3390/genes12060805.
- 42. Sanjurjo-Soriano C, Erkilic N, Baux D, et al. Genome editing in patient iPSC corrects the most prevalent USH2A mutations and reveals intriguing mutant mRNA expression Profiles[J]. Mol Ther Methods Clin Dev, 2020, 17: 156-173. DOI: 10.1016/j.omtm.2019.11.016.
- 43. Pendse ND, Lamas V, Pawlyk BS, et al. In vivo assessment of potential therapeutic approaches for USH2A-associated diseases[J]. Adv Exp Med Biol, 2019, 1185: 91-96. DOI: 10.1007/978-3-030-27378-1_15.
- 44. De Angeli P, Spaag S, Shliaga S, et al. Single-guide RNA Cas9 and enhanced-deletion Cas9 rescue a recurrent USH2A-related splicing defect[J/OL]. Mol Ther Nucleic Acids, 2025, 36(2): 102523[2025-03-21]. https://pubmed.ncbi.nlm.nih.gov/40235854/. DOI: 10.1016/j.omtn.2025.102523.
- 45. Fry LE, Major L, Salman A, et al. Comparison of CRISPR-Cas13b RNA base editing approaches for USH2A-associated inherited retinal degeneration[J/OL]. Commun Biol, 2025, 8(1): 200[2025-02-08]. https://pubmed.ncbi.nlm.nih.gov/39922978/. DOI: 10.1038/s42003-025-07557-3.
- 46. Panagiotopoulos AL, Karguth N, Pavlou M, et al. Antisense oligonucleotide- and CRISPR-Cas9-mediated rescue of mRNA splicing for a deep intronic CLRN1 mutation[J]. Mol Ther Nucleic Acids, 2020, 21: 1050-1061. DOI: 10.1016/j.omtn.2020.07.036.
- 47. Yang F, Ma H, Garg R, et al. Inhibition of ryanodine receptor 1 reduces endoplasmic reticulum (ER) stress and promotes ER protein degradation in cyclic nucleotide-gated channel deficiency[J]. Adv Exp Med Biol, 2023, 1415: 353-358. DOI: 10.1007/978-3-031-27681-1_51.
- 48. Siles L, Gaudó P, Pomares E. High-efficiency CRISPR/Cas9-mediated correction of a homozygous mutation in achromatopsia-patient-derived iPSC[J/OL]. Int J Mol Sci, 2023, 24(4): 3655[2023-02-11]. https://pubmed.ncbi.nlm.nih.gov/36835061/. DOI: 10.3390/ijms24043655.
- 49. Muller A, Sullivan J, Schwarzer W, et al. High-efficiency base editing in the retina in primates and human tissues[J]. Nat Med, 2025, 31(2): 490-501. DOI: 10.1038/s41591-024-03422-8.
- 50. Xiao YL, Wu Y, Tang W. An adenine base editor variant expands context compatibility[J]. Nat Biotechnol, 2024, 42(9): 1442-1453. DOI: 10.1038/s41587-023-01994-3.
- 51. Zhao T, Li Q, Zhou C, et al. Small-molecule compounds boost genome-editing efficiency of cytosine base editor[J]. Nucleic Acids Res, 2021, 49(15): 8974-8986. DOI: 10.1093/nar/gkab645.
- 52. Wimmer T, Sawinski H, Urban AM, et al. Rapid and reliable quantification of prime editing targeting within the porcine ABCA4 gene using a BRET-based sensor[J]. Nucleic Acid Ther, 2023, 33(3): 226-232. DOI: 10.1089/nat.2022.0037.
- 53. Vázquez-Domínguez I, Öktem M, Winkelaar FA, et al. Lipopeptide-mediated Cas9 RNP delivery: a promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4[J/OL]. Mol Ther Nucleic Acids, 2024, 35(4): 102345[2024-09-26]. https://pubmed.ncbi.nlm.nih.gov/39494150/. DOI: 10.1016/j.omtn.2024.102345.
- 54. De Angeli P, Flores-Tufiño A, Stingl K, et al. Splicing defects and CRISPR-Cas9 correction in isogenic homozygous photoreceptor precursors harboring clustered deep-intronic ABCA4 variants[J/OL]. Mol Ther Nucleic Acids, 2024, 35(1): 102113[2023-12-27]. https://pubmed.ncbi.nlm.nih.gov/38274366/. DOI: 10.1016/j.omtn.2023.102113.
- 55. Sarkar H, Moosajee M. Choroideremia: molecular mechanisms and therapies[J]. Trends Mol Med, 2022, 28(5): 378-387. DOI: 10.1016/j.molmed.2022.02.011.
- 56. Fonseca AF, Coelho R, Da-Silva ML, et al. Modeling choroideremia disease with isogenic induced pluripotent stem cells[J]. Stem Cells Dev, 2024, 33(19-20): 528-539. DOI: 10.1089/scd.2024.0105.
- 57. Iwagawa T, Masumoto H, Tabuchi H, et al. Evaluation of CRISPR/Cas9 exon-skipping vector for choroideremia using human induced pluripotent stem cell-derived RPE[J/OL]. J Gene Med, 2023, 25(2): e3464[2022-12-04]. https://pubmed.ncbi.nlm.nih.gov/36413603/. DOI: 10.1002/jgm.3464.
- 58. Mao S, Sun X, Duan C, et al. Generation of a gene-corrected isogenic iPSC cell line from an X-linked retinoschisis patient with a hemizygous mutation c. 304C>T (p. R102W) in RS1 gene[J/OL]. Stem Cell Res, 2023, 73: 103263[2023-11-23]. https://pubmed.ncbi.nlm.nih.gov/38011758/. DOI: 10.1016/j.scr.2023.103263.
- 59. Yang TC, Chang CY, Yarmishyn AA, et al. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSC and mouse retina[J]. Acta Biomater, 2020, 101: 484-494. DOI: 10.1016/j.actbio.2019.10.037.
- 60. Ruan GX, Barry E, Yu D, et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10[J]. Mol Ther, 2017, 25(2): 331-341. DOI: 10.1016/j.ymthe.2016.12.006.
- 61. Pan X, Qu K, Yuan H, et al. Massively targeted evaluation of therapeutic CRISPR off-targets in cells[J/OL]. Nat Commun, 2022, 13(1): 4049[2022-07-13]. https://pubmed.ncbi.nlm.nih.gov/35831290/. DOI: 10.1038/s41467-022-31543-6.