1. |
Shimizu E, Tang YP, Rampon C, et al. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation[J]. Science, 2000, 290(5494):1170-1174.
|
2. |
Cui X, Ji D, Fisher DA, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases[J]. Nat Biotechnol, 2011, 29(1):64-67. DOI:10.1038/nbt. 1731.
|
3. |
Cermak T, Starker CG, Voytas DF. Efficient design and assembly of custom TALENs using the golden gate platform[J]. Methods Mol Biol, 2015, 1239:133-159. DOI:10.1007/978-1-4939-1862-1_7.
|
4. |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. DOI:10.1126/science.1231143.
|
5. |
Tucker BA, Mullins RF, Stone EM. Stem cells for investigation and treatment of inherited retinal disease[J]. Hum Mol Genet, 2014, 23:9-16.DOI:10.1093/hmg/ddu124.
|
6. |
Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions[J]. Annu Rev Microbiol, 2010, 64:475-493. DOI:10.1146/annurev. Micro. 112408.134123.
|
7. |
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340):602-607. DOI:10.1038/nature09886.
|
8. |
Haurwitz RE, Jinek M, Wiedenheft B, et al. Sequence-and structure-specific RNA processing by a CRISPR endonuclease[J]. Science, 2010, 329(5997):1355-1358. DOI:10.1126/science.1192272.
|
9. |
Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(39):2579-2586.
|
10. |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. DOI:10.1126/science.1225829.
|
11. |
Mei Y, Wang Y, Chen H, et al. Recent progress in CRISPR/Cas9 technology[J]. J Genet Genomics, 2016, 43(2):63-75. DOI:10.1016/j.jgg.2016.01.001.
|
12. |
Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus[J]. Sci Rep, 2013, 3:2510. DOI:10.1038/srep02510.
|
13. |
Ota S, Hisano Y, Ikawa Y, et al. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish[J]. Genes Cells, 2014, 19(7):555-564. DOI:10.1111/gtc.12154.
|
14. |
Chrispell JD, Rebrik TI, Weiss ER. Electroretinogram analysis of the visual response in zebrafish larvae[J/OL]. J Vis Exp, 2015(97):52662[2015-05-16]. http://dx.doi.org/10.3791/52662.DOI:10.3791/52662.
|
15. |
Parikh BA, Beckman DL, Patel SJ, et al. Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing[J/OL]. PLoS One, 2015, 10(1):0116484[2015-01-14].http://dx.doi.org/10.1371/journal.pone.0116484.DOI:10.1371/journal.pone.0116484.
|
16. |
Wang S, Sengel C, Emerson MM, et al. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina[J]. Dev Cell, 2014, 30(5):513-527. DOI:10.1016/j.devcel.2014.07.018.
|
17. |
Hung SS, Chrysostomou V, Li F, et al. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo[J]. Invest Ophthalmol Vis Sci, 2016, 57(7):3470-3476. DOI:10.1167/iovs.16-19316.
|
18. |
Bakondi B, Lv W, Lu B, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J]. Mol Ther, 2016, 24(3):556-563. DOI:10.1038/mt.2015.220.
|
19. |
Hong SG, Kim MK, Jang G, et al. Generation of red fluorescent protein transgenic dogs[J]. Genesis, 2009, 47(5):314-322. DOI:10.1002/dvg.20504.
|
20. |
Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013, 13(6):659-662. DOI:10.1016/j.stem. 2013. 10.016.
|
21. |
Maguire CA, Ramirez SH, Merkel SF, et al. Gene therapy for the nervous system:challenges and new strategies[J]. Neurotherapeutics, 2014, 11(4):817-839. DOI:10.1007/s13311-014-0299-5.
|
22. |
Trapani I, Toriello E, de Simone S, et al. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease[J]. Hum Mol Genet, 2015, 24(23):6811-625. DOI:10.1093/hmg/ddv386.
|
23. |
Thompson DA, Ali RR, Banin E, et al. Advancing therapeutic strategies for inherited retinal degeneration:recommendations from the monaciano symposium[J]. Invest Ophthalmol Vis Sci, 2015, 56(2):918-931. DOI:10.1167/iovs.14-16049.
|
24. |
Daiger SP, Bowne SJ, Sullivan LS. Genes and mutations causing autosomal dominant retinitis pigmentosa[J/OL]. Cold Spring Harb Perspect Med, 2014, 5(10):a017129[2014-10-10].https://www.researchgate.net/publication/266747559_Genes_and_Mutations_Causing_Autosomal_Dominant_Retinitis_Pigmentosa. DOI:10.1101/cshperspect. a017129.
|
25. |
Takahashi K, Tanabe K, Ohnuki M, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell, 2007, 131(5):861-872.
|
26. |
Mohamadnejad M, Swenson ES. Induced pluripotent cells mimicking human embryonic stem cells[J]. Arch Iran Med, 2008, 11(1):125-128.
|
27. |
Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors[J]. Nature, 2008, 451(7175):141-146.
|
28. |
Ding Q, Regan SN, Xia Y, et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs[J]. Cell Stem Cell, 2013, 12(4):393-394. DOI:10.1016/j.stem.2013.03.006.
|
29. |
Liu GH, Suzuki K, Qu J, et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs[J]. Cell Stem Cell, 2011, 8(6):688-694. DOI:10.1016/j.stem.2011.04.019.
|
30. |
Wang Y, Zheng CG, Jiang Y, et al. Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice[J]. Cell Res, 2012, 22(4):637-648. DOI:10.1038/cr.2012.23.
|
31. |
Zheng A, Li Y, Tsang SH. Personalized therapeutic strategies for patients with retinitis pigmentosa[J]. Expert Opin Biol Ther, 2015, 15(3):391-402. DOI:10.1517/14712598.2015.1006192.
|
32. |
Smith C, Abalde-Atristain L, He C, et al. Efficient and allele-specific genome editing of disease loci in human iPSCs[J]. Mol Ther, 2015, 23(3):570-577. DOI:10.1038/mt.2014.226.
|
33. |
Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268):84-88. DOI:10.1126/science. aad5227.
|
34. |
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide offtarget effects[J]. Nature, 2016, 529(7587):490-495. DOI:10.1038/nature16526.
|
35. |
Zarzeczny A, Scott C, Hyun I, et al. iPS cells:mapping the policy issues[J]. Cell, 2009, 139(6):1032-1037. DOI:10.1016/j.cell.2009.11.039.
|