1. |
Volgyi B, Kovacs-Oller T, Atlasz T, et al. Gap junctional coupling in the vertebrate retina: variations on one theme?[J]. Prog Retin Eye Res, 2013, 34: 1-18.
|
2. |
Roy S, Trudeau K, Roy S, et al. New insights into hyperglycemia-induced molecular changes in microvascular cells[J]. J Dent Res, 2010, 89: 116-127.
|
3. |
Kerr NM, Johnson CS, Green CR, et al. Gap junction protein connexin43(GJA1) in the human glaucomatous optic nerve head and retina[J]. J Clin Neurosci, 2011, 18: 102-108.
|
4. |
Pocrnich CE, Shao Q, Liu H, et al. The effect of connexin43 on the level of vascular endothelial growth factor in human retinal pigment epithelial cells[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250: 515-522.
|
5. |
Ripps H. Cell death in retinitis pigmentosa: gap junctions and the 'bystander' effect[J]. Exp Eye Res, 2002, 74: 327-336.
|
6. |
Oshima A. Structure and closure of connexin gap junction channels[J]. FEBS Lett, 2014, 588: 1230-1237.
|
7. |
Laird DW. Life cycle of connexins in health and disease[J]. Biochem J, 2006, 394: 527-543.
|
8. |
Dere E, Zlomuzica A. The role of gap junctions in the brain in health and disease[J]. Neurosci Biobehav Rev, 2012, 36: 206-217.
|
9. |
Peixoto PM, Ryu SY, Pruzansky DP, et al. Mitochondrial apoptosis is amplified through gap junctions[J]. Biochem Biophys Res Commun, 2009, 390: 38-43.
|
10. |
Wang Y, Song JH, Denisova JV, et al. Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury[J]. J Neurosci, 2012, 32: 713-725.
|
11. |
Kar R, Batra N, Riquelme MA, et al. Biological role of connexin intercellular channels and hemichannels[J]. Arch Biochem Biophys, 2012, 524: 2-15.
|
12. |
Sohl G, Maxeiner S, Willecke K. Expression and functions of neuronal gap junctions[J]. Nat Rev Neurosci, 2005, 6: 191-200.
|
13. |
Kihara AH, Santos TO, Osuna-Melo EJ, et al. Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis[J]. Int J Dev Neurosci, 2010, 28: 39-52.
|
14. |
O'Brien JJ, Chen X, Macleish PR, et al. Photoreceptor coupling mediated by connexin36 in the primate retina[J]. J Neurosci, 2012, 32: 4675-4687.
|
15. |
Feigenspan A, Teubner B, Willecke K, et al. Expression of neuronal connexin36 in AⅡ amacrine cells of the mammalian retina[J]. J Neurosci, 2001, 21: 230-239.
|
16. |
Feigenspan A, Janssen-Bienhold U, Hormuzdi S, et al. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina[J]. J Neurosci, 2004, 24: 3325-3234.
|
17. |
Pan F, Paul DL, Bloomfield SA, et al. Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina[J]. J Comp Neurol, 2010, 518: 911-927.
|
18. |
Johansson K, Bruun A, Ehinger B. Gap junction protein connexin43 is heterogeneously expressed among glial cells in the adult rabbit retina[J]. J Comp Neurol, 1999, 407: 395-403.
|
19. |
Guldenagel M, Sohl G, Plum A, et al. Expression patterns of connexin genes in mouse retina[J]. J Comp Neurol, 2000, 425: 193-201.
|
20. |
Kerr NM, Johnson CS, de Souza CF, et al. Immunolocalization of gap junction protein connexin43(GJA1) in the human retina and optic nerve[J]. Invest Ophthalmol Vis Sci, 2010, 51: 4028-4034.
|
21. |
Hilgen G, von MJ, Willecke K, et al. Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina[J]. J Comp Neurol, 2011, 519: 433-450.
|
22. |
Maxeiner S, Dedek K, Janssen-Bienhold U, et al. Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AⅡ amacrine and ON cone bipolar cells and leads to impaired visual transmission[J]. J Neurosci, 2005, 25: 566-576.
|
23. |
Palacios-Prado N, Sonntag S, Skeberdis VA, et al. Gating, permselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina[J]. J Physiol, 2009, 587: 3251-3269.
|
24. |
Pan F, Keung J, Kim IB, et al. Connexin 57 is expressed by the axon terminal network of B-type horizontal cells in the rabbit retina[J]. J Comp Neurol, 2012, 520: 2256-2274.
|
25. |
Zhang Y, Semple-Rowland SL. Rhythmic expression of clock-controlled genes in retinal photoreceptors is sensitive to 18-beta-glycyrrhetnic acid and 18-alpha-glycyrrhetnic acid-3-hemisuccinate[J]. Brain Res Mol Brain Res, 2005, 135: 30-39.
|
26. |
Cook JE, Becker DL. Gap-junction proteins in retinal development: new roles for the ""nexus""[J]. Physiology (Bethesda), 2009, 24: 219-230.
|
27. |
Deans MR, Volgyi B, Goodenough DA, et al. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina[J]. Neuron, 2002, 36: 703-712.
|
28. |
Demb JB, Pugh EN. Connexin36 forms synapses essential for night vision[J]. Neuron, 2002, 36: 551-553.
|
29. |
Cronin M, Anderson PN, Cook JE, et al. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury[J]. Mol Cell Neurosci, 2008, 39: 152-160.
|
30. |
Schubert T, Maxeiner S, Kruger O, et al. Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina[J]. J Comp Neurol, 2005, 490: 29-39.
|
31. |
Sonntag S, Dedek K, Dorgau B, et al. Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina[J]. J Neurosci, 2012, 32: 10713-10724.
|
32. |
Shelley J, Dedek K, Schubert T, et al. Horizontal cell receptive fields are reduced in connexin57-deficient mice[J]. Eur J Neurosci, 2006, 23: 3176-3186.
|
33. |
Sato T, Haimovici R, Kao R, et al. Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells[J]. Diabetes, 2002, 51: 1565-1571.
|
34. |
Fernandes R, Girao H, Pereira P. High glucose down-regulates intercellular communication in retinal endothelial cells by enhancing degradation of connexin 43 by a proteasome-dependent mechanism[J]. J Biol Chem, 2004, 279: 27219-27224.
|
35. |
Trudeau K, Muto T, Roy S. Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome C release in retinal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2012, 53: 6675-6681.
|
36. |
Manasson J, Tien T, Moore C, et al. High glucose-induced downregulation of connexin 30.2 promotes retinal vascular lesions: implications for diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2013, 54: 2361-2366.
|
37. |
Shibata M, Oku H, Sugiyama T, et al. Disruption of gap junctions may be involved in impairment of autoregulation in optic nerve head blood flow of diabetic rabbits[J]. Invest Ophthalmol Vis Sci, 2011, 52: 2153-2159.
|
38. |
Malone P, Miao H, Parker A, et al. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes[J]. Glia, 2007, 55: 1085-1098.
|
39. |
Bringmann A, Wiedemann P. Muller glial cells in retinal disease[J]. Ophthalmologica, 2012, 227: 1-19.
|
40. |
Deva NC, Zhang J, Green CR, et al. Connexin43 modulation inhibits scarring in a rabbit eye glaucoma trabeculectomy model[J]. Inflammation, 2012, 35: 1276-1286.
|
41. |
Wittig D, Wang X, Walter C, et al. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes[J/OL]. PLoS One, 2012, 7: 33195[2012-03-22]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0033195.
|
42. |
Pocrnich CE, Shao Q, Liu H, et al. The effect of connexin43 on the level of vascular endothelial growth factor in human retinal pigment epithelial cells[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250: 515-522.
|
43. |
Cusato K, Bosco A, Rozental R, et al. Gap junctions mediate bystander cell death in developing retina[J]. J Neurosci, 2003, 23: 6413-6422.
|
44. |
Kranz K, Paquet-Durand F, Weiler R, et al. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones[J/OL]. PLoS One, 2013, 8: 57163[2013-02-27]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0057163.
|
45. |
Paschon V, Higa GS, Resende RR, et al. Blocking of connexin-mediated communication promotes neuroprotection during acute degeneration induced by mechanical trauma[J/OL]. PLoS One, 2012, 7: 45449[2012-09-20]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045449.
|
46. |
Striedinger K, Petrasch-Parwez E, Zoidl G, et al. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss[J]. Eur J Neurosci, 2005, 22: 605-616.
|
47. |
Kerr NM, Johnson CS, Zhang J, et al. High pressure-induced retinal ischaemia reperfusion causes upregulation of gap junction protein connexin43 prior to retinal ganglion cell loss[J]. Exp Neurol, 2012, 234: 144-152.
|
48. |
Danesh-Meyer HV, Kerr NM, Zhang J, et al. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia[J]. Brain, 2012, 135: 506-520.
|