1. |
Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355:1432-1444.
|
2. |
Sica A, Schioppa T, Mantovani A,et al. Tumour-associated marophages are a distinct M2 polarised population promoting tumour progression:potential targets of anti-cancer therapy[J]. Eur J Cancer, 2006, 42:717-727.
|
3. |
Hao NB, Lü MH, Fan YH, et al. Macrophages in tumor microenvironments and the progression of tumors[J/OL]. Clin Dev Immunol, 2012, 2014:948098[2012-01-19]. http://www.hindawi.com/journals/jir/2012/948098/.
|
4. |
Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3:23-35.
|
5. |
Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages:in situ reprogramming of tumor-associated macrophages[J]. J Leukoc Biol, 2009, 86:1105-1109.
|
6. |
Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci, 2008, 13:453-461.
|
7. |
Cassol E, Cassetta L, Alfano M, et al. Macrophage polarization and HIV-1 infection[J]. J Leukoc Biol, 2010, 87:599-608.
|
8. |
Verreck FA, Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria[J]. Proc Natl Acad Sci USA, 2004, 30, 101:4560-4565.
|
9. |
Kolls JK, Lindén A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21:467-476.
|
10. |
Mantovani A, Sica A, Allavena P, et al.Tumor-associated macrophages and the relatedmyeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation[J]. Hum Immunol, 2009, 70:325-330.
|
11. |
Odegaard JI, Chawla A. Mechanisms of macrophage activation in obesity-induced insulin resistance[J]. Nat Clin Pract Endocrinol Metab, 2008, 4:619-626.
|
12. |
Cao X, Shen D, Patel MM, et al. Macrophage polarization in the maculae of age-related macular degeneration:a pilot study[J]. Pathol Int, 2011, 61:528-535.
|
13. |
Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression[J]. Semin Cancer Biol, 2008, 18:349-355.
|
14. |
Suganami T, Ogawa Y. Adipose tissue macrophages:their role in adipose tissue remodeling[J]. J Leukoc Biol, 2010, 88:33-39.
|
15. |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8:958-969.
|
16. |
Heikkila M, Pasanen A, Kivirikko KI, et al. Roles of the human hypoxia-inducible factor(HIF)-3alpha variants in the hypoxia response[J]. Cell Mol Life Sci, 2011, 68:3885-3901.
|
17. |
Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages:effectors of angiogenesis and tumor progression[J]. Biochim Biophys Acta, 2009, 1796:11-18.
|
18. |
Werno C, Menrad H, Weigert A, et al. Knockout of HIF-1alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses[J]. Carcinogenesis, 2010, 31:1863-1872.
|
19. |
Takeda N, O'Dea EL, Doedens A, et al. Differential activation and antagonistic function of HIF-alpha isoforms in macrophages are essential for NO homeostasis[J]. Genes Dev, 2010, 24:491-501.
|
20. |
Sica A, Saccani A, Mantovani A. Tumor-associated macrophages:a molecular perspective[J]. Int Immunopharmacol, 2002, 2:1045-1054.
|
21. |
Patel SA, Simon MC. Biology of hypoxia-induciblefactor- 2alpha in development and disease[J]. Cell Death Differ, 2008, 15:628-634.
|
22. |
Guruvayoorappan C.Tumor versus tumor-associated macrophages:how hot is the link?[J]. Integr Cancer Ther, 2008, 7:90-95.
|
23. |
Pucci F, Venneri MA, Biziato D, et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships[J], Blood, 2009, 114:901-914.
|
24. |
Coffelt SB, Tal AO, Scholz A, et al. Angiopoietin-2 regulates gene expression in Tie2-expressing monocytes and augments their inherent proangiogenic functions[J]. Cancer Res, 2010, 70:5270-5280.
|
25. |
Biswas SK, Lewis CE. NF-kappaB as a central regulator of macrophage function in tumors[J]. J Leukoc Biol, 2010, 88:877-884.
|
26. |
Ma J, Mehta M, Lam G, et al. Influence of subretinal fluid in advanced stage retinopathy of prematurity on proangiogenic response and cell proliferation[J]. Mol Vis, 2014, 20:881-893.
|
27. |
Rijsewijk F, Schuermann M, Wagenaar E, et al. Thedrosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless[J]. Cell, 1987, 50:649-667.
|
28. |
Wu J, Cohen SM. Repression of Teashirt marks the initiation of wing development[J]. Development, 2002, 129:2411-2418.
|
29. |
Nusse R, van Ooyen A, Cox D, et al. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15[J]. Nature, 1984, 307:131-136.
|
30. |
Fan Y, Ye J, Shen F, et al. Interleukin-6 stimulates circulating bloodderived endothelial progenitor cell angiogenesis in vitro[J].J Cereb Blood Flow Metab, 2008, 28:90-98.
|
31. |
Rosell A, Arai K, Lok J, et al. Interleukin-1beta augments angiogenic responses of murine endothelial progenitor cells in vitro[J]. J Cereb Blood Flow Metab, 2009, 29:933-943.
|
32. |
Kim J, Kim DW, Ha Y, et al. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling[J]. J Immunol, 2010, 185:1274-1282.
|
33. |
Cheng CW, Yeh JC, Fan TP, et al. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration[J]. Biochem Biophys Res Commun, 2008, 365:285-290.
|
34. |
Diez-Roux G, Argilla M, Makarenkova H, et al. Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression[J]. Development, 1999, 126:2141-2147.
|
35. |
Rao S, Lobov IB, Vallance JE, et al.Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch[J]. Development, 2007, 134:4449-4458.
|
36. |
Stefater JA, Lewkowich I, Rao S, et al. Regulation of angiogenesis by anon-canonical Wnt-Flt1 pathway in myeloid cells[J]. Nature, 2011, 474:511-515.
|
37. |
Fantin A, Vieira JM, Gestri G, et al.Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction[J]. Blood, 2010, 116:829-840.
|
38. |
Ingber DE. Extracellular matrix as a solid-state regulator in angiogenesis:identification of new targets for anti-cancer therapy[J]. Semin Cancer Biol, 1992, 3:57-63.
|
39. |
Schulze-Osthoff K, Risau W, Vollmer E, et al. In situ detection of basic fibroblast growth factor by highly specific antibodies[J].Am J Pathol, 1990, 137:85-92.
|
40. |
Berse B, Brown LF, van de Water L, et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors[J]. Mol Biol Cell, 1992, 3:211-220.
|
41. |
Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia[J]. J Exp Med, 2003, 198:1391-1402.
|
42. |
Schoppmann SF, Birner P, St ckl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis[J]. Am J Pathol, 2002, 161:947-956.
|
43. |
Tseng D, Vasquez-Medrano DA, Brown JM. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas[J]. Br J Cancer, 2011, 104:1805-1809.
|
44. |
Schmid MC, Avraamides CJ, Foubert P, et al. Combined blockade of integrin-α4β1 plus cytokines SDF-1α or IL-1β potently inhibits tumor inflammation and growth[J]. Cancer Res, 2011, 71:6965-6975.
|
45. |
Fischer C, Mazzone M, Jonckx B, et al. FLT1 and its ligands VEGFB and PlGF:drug targets for anti-angiogenic therapy?[J]. Nat Rev Cancer, 2008, 12:942-956.
|
46. |
Zhang W, Zhu XD, Sun HC, et al. Depletion of tumorassociated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects[J]. Clin Cancer Res, 2010, 16:3420-3430.
|
47. |
Dineen SP, Lynn KD, Holloway SE, et al.Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice[J]. Cancer Res, 2008, 68:4340-4346.
|
48. |
Guiducci C, Vicari AP, Sangaletti S, et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection[J].Cancer Res, 2005, 65:3437-3446.
|
49. |
Rauh MJ, Sly LM, Kalesnikoff J, et al.The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans, 2004, 32:785-788.
|